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Abstract

In this paper, we propose a framework capable of dealing with anaphora
and ellipsis which is both general and algorithmic. This generality is en-
sured by the compination of two general ideas. First, we use a dynamic
semantics which reperent effects using a monad structure. Second we
treat scopes flexibly, extending them as needed.

We additionally implement this framework as an algorithm which trans-
lates abstract syntax to logical formulas. We argue that this framework
can provide a unified account of a large number of anaphoric phenomena.
Specifically, we show its effectiveness in dealing with pronominal and
VP-anaphora, reflexives, strict and lazy pronouns, lazy identity, bound
variable anaphora, e-type pronouns, and cataphora. This means that in
particular we can handle complex cases like Bach-Peters sentences, which
require an account dealing simultaneously with several phenomena.

We use Haskell as a meta-language to present the theory, which also
consitutes an implementation of all the phenomena discussed in the paper.
To demonstrate coverage, we propose a test suite that can be used to
evaluate computational approaches to anaphora.

1 Introduction
Anaphora is a vast topic that has been exploited and discussed from the point of
view of different formal semantics systems, each focusing on different phenomena
(Cooper, 1979; Evans, 1980; Roberts, 1989; Roberts, 1990; Groenendijk and
Stokhof, 1991; Poesio and Zucchi, 1992). A question which arises is to what
extent these different aspect of anaphora can be considered as instances of a
single phenomena. Furthermore, if they turn out to be related, can they be
treated under a single unified appoach? Our overarching aim is to construct a
system for a unified computational treatment of anaphora of all kinds.

In this paper, we propose an account of anaphora which captures simulta-
neously (at least) all of the following phenomena:

• Basic anaphoric cases

• Category-general anaphora (VP anaphora, sentential anaphora, etc.)
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• Strict and sloppy anaphora

• Bound variable readings

• E-type pronouns

• Donkey anaphora

• Cataphora

• Bach-Peters sentences

In particular, we find that our treatment of E-type pronouns and Bach-
Peters sentences is a novel one, and as such can be considered a contribution
to formal semantics in their own right. As a witness to the completeness of our
treatment, we provide a faithful formalization in Haskell (Marlow, 2010). This
formalization doubles up as an implementation. To demonstrate coverage of
our theory, we have additionally tested on a suite of 65 representative examples
presented in the appendix.

The structure of the paper is as follows: in Section 2, we give the background
theory to this paper and briefly introduce monads. In Section 3, we provide a
unified monadic account for the range of phenomena listed above. In Section 4,
we present the Haskell implementation of the system and evaluate it in Section 5.
In Section 6 we discuss related work. Lastly in Section 7 we conclude and
propose directions for future research.

2 Background
2.1 Higher-order logic with sorts and Σ types
In this paper we interpret natural language phrases (with anaphoric elements)
as logical formulas. Most of the particular details of the logic that we use are of
limited importance to the dynamic semantics that we propose. Unless explicitly
stated otherwise, our analysis transposes easily to any higher-order logic. Yet we
find it convenient to use a few specific surface features from constructive type-
theories, sometimes called Modern Type Theories (MTTs) in the literature.

First, we will specify the domain of quantification for all quantifiers. More
specifically, we will write ∀(𝑥 ∶ 𝑀𝑎𝑛).𝑀𝑜𝑟𝑡𝑎𝑙(𝑥) instead of ∀𝑥.𝑀𝑎𝑛(𝑥) →
𝑀𝑜𝑟𝑡𝑎𝑙(𝑥) and thus 𝑀𝑎𝑛 should be understood as a type (not a predicate).
In effect, we use type many-sortedness offered by MTTs and we take the CNs-
as-Types view, notably used by Ranta (1994) and later by Boldini (2000). There
is substantial literature on whether CNs should be interpreted as types or pred-
icates. Within the MTT tradition, most of the approaches have been using
the CNs-as-Types. Later work by Luo (2012), Chatzikyriakidis (2014), and
Chatzikyriakidis and Luo (2017) have explicitly argued that the CNs-as-Types
approach is to be preferred over the predicates one. The debate is still open
on which approach is superior, but in this paper our choice of the CN-as-types
approach is justified by its better fit with scope extension (see Section 3.9.4).
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Second, if such domains need to embed predicates, we use Σ-types to embed
them.

Third, as proposed by Chatzikyriakidis and Luo (2013), we make use of the
following subtyping rule:

Σ(𝑥 ∶ 𝐴).𝐵 ⊆ 𝐴
This rule is not critical, but allows to conveniently omit unessential projections.
This allows us to conveniently write ∀𝑥 ∶ (Σ(𝑦 ∶ 𝑀𝑎𝑛).𝑊𝑖𝑠𝑒(𝑦)).𝑂𝑙𝑑(𝑥) instead
of ∀𝑥 ∶ (Σ(𝑦 ∶ 𝑀𝑎𝑛).𝑊𝑖𝑠𝑒(𝑦)).𝑂𝑙𝑑(𝜋1(𝑥)).

Finally, we will use the record notation of Σ types. This is purely a conve-
nience, because records are isomorphic to nested Σ types. Thus, for the above
formula we can write ∀𝑥 ∶ ([𝑦 ∶ 𝑀𝑎𝑛; 𝑝 ∶ 𝑊𝑖𝑠𝑒(𝑦)]).𝑂𝑙𝑑(𝑥.𝑦). Note in particular
the use of .𝑦 for projection of the field 𝑦.

2.2 Monads
Originating in Category Theory (Barr and Wells, 1999), monads have been
shown to be very useful for the semantics of programming languages and have
been particularly widely used in functional programming languages. Monads
have made it into the formal semantics of natural languages, succeeding in pro-
viding solutions to problems where the notions of context and context dynamics
play an important role. Monadic treatments have been proposed for quantifiers
(Barker and Shan, 2004), anaphora (Unger, 2011), conversational implicatures
(Giorgolo and Asudeh, 2012), interrogatives (Shan, 2002) and linguistic opacity
(Giorgolo and Asudeh, 2014), among others.

Formally, a monad is a triple (M, return, ⋆) where

• 𝑀 is a type-function: it maps any type 𝑎 to a type 𝑀𝑎. For our purposes,
𝑀𝑎 can be understood as the type of effectful computations that yield a
value of type 𝑎.

• return is a function of type 𝑎 → 𝑀𝑎 which turns a pure (effect-free) value
to a computation without effect.

• The operator ⋆, pronounced “bind” is a function of type 𝑀𝑎 → (𝑎 →
𝑀𝑏) → 𝑀𝑏 which composes two computations. That is, given an effectful
computation of type 𝑀𝑎 and a function mapping 𝑎 to an effectful com-
putation of type 𝑀𝑏, it returns a computation which in turn returns the
result of the second computation. The effect of the composition is the
composition of effects.

Additionally, for the triple to be a monad, the bind operator must be associative,
and return must be its right and left unit. Formally:

• (m ⋆ f) ⋆ g = m ⋆ (𝜆x → f x ⋆ g)
• (return x) ⋆ f = f x

• f ⋆ return = f
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2.3 Do-notation
An expression such as 𝑀 ⋆𝜆𝑥.(𝑁 ⋆𝜆𝑦.𝑂) is commonly used to bind the result of
𝑀 as 𝑥 in the expressions 𝑁 and 𝑂; and 𝑦 as the result of 𝑁 in the expression 𝑂.
An alternative notation for the same term, called the do-notation and originating
from the Haskell language, is the following:

do x ← M
y ← N
O

The do-notation has an advantage of emphasizing the order of composition of
effects (top down), and that of omitting the groupings of sub-expressions —
which does not matter according to the associativity law of monads.

3 Generalized effectful semantics for anaphora:
how to account for various phenomena

We place ourselves in the tradition of Montague semantics, in the sense that
we interpret syntax trees as logical formulas. Nevertheless, we depart from
that tradition in two respects. First, the logical system that we target is not a
plain higher-order logic, but one equipped with dependent types. Second, each
constituent is not just interpreted as a logical formula, but as a pair of a formula
and an effect, which captures the dynamic aspects of meaning. In fact, following
Shan (2002), the effect is coupled with the Montagovian1 interpretation using
a monad structure. More precisely, as Unger (2011) does, we assert that the
relevant effects include:

• a lookup in an environment

• the production of a new environment

This kind of effects can be realized by using the standard side-effects monad
of Moggi (1991), also called more accurately the state monad. We recall its
type-function (𝑀 above) below using Haskell notation:

type Dynamic a = Env → (a × Env)
Thus, if an effect-free semantic interpretation is a, its effectful counterpart is a
function from an assumed environment Env (or background, context) to a pair
of the semantic content a and a new environment. As is standard, looking up
the environment is done using the get function, while updating it is done using
the set function.

get ∶∶ Dynamic Env
get = 𝜆𝜌→ (𝜌, 𝜌)

1Or indeed any interpretation which uses a logical system, such as dependent types, TTR,
System F, etc.
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set ∶∶ Env → Dynamic 1
set 𝜌 = 𝜆𝜌0 → (𝜌, ())

In set, the old environment 𝜌0 is ignored. Additionally set returns no useful
value (only its dynamic effect matters), and thus we return a unit type 1 which
contains no useful information.

We take the type associated with syntactic categories to be the usual se-
mantic interpretations assumed in Montague-style semantics. For example, the
type associated with a verb phrase is 𝑜𝑏𝑗𝑒𝑐𝑡 → 𝑃𝑟𝑜𝑝: a function from objects
(individuals in Montague’s system) to propositions (truth values for Montague).
For example, the semantic category corresponding to 𝑉 𝑃 is:

Dynamic (Semantics (VP))

or, after expansion

Dynamic (Semantics (VP))
= Dynamic (object → Prop)
= Env → ((object → Prop) × Env)

The monadic structure associated with Dynamics has several pleasant proper-
ties. The existence of the return function ensures that any semantics cast in a
Montagovian-style framework can be also embedded in our dynamic semantics
(simply by associating it with the empty effect):

return x = 𝜆𝜌. (x, 𝜌)

Furthermore, the bind operator ensures that any two effectful interpretations
can be combined arbitrarily. Consequently any combination interpretations in
Montague Semantics (MS) can be lifted to effectful MS.

m ⋆ f = 𝜆𝜌→ let (𝜌′, x) = m 𝜌 in f x 𝜌′

Monadic associativity ensures that we do not have to worry about the order of
grouping effects.

3.1 Structure of the environment and basic anaphoric cases
The environment (Env) is a map2 from atomic anaphoric expressions (such as
pronouns) to semantic representations. For now, we restrict the domain of the
environment to NP anaphora:

type Env = NP → Dynamic ((object → Prop) → Prop)

For example, if the discourse has introduced a male person whose denotation isJBillK, the corresponding environment 𝜌 can look like this:
2This function may be partial if the discourse is incomplete or incoherent.
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𝜌 ∶ Env
𝜌 "he" = JBill K
𝜌 "him" = JBill K
𝜌 "his" = JBill′s K
...

Thus in most cases, the effect of a non-anaphoric noun phrase is to modify
the environment, so that appropriate anaphoric expressions can be mapped to
it. We say that we push the interpretation onto the environment. This is done
by creating an environment which checks for a pronoun that can refer to the
expression and returns the given interpretation exactly in that case, as follows:

pushNP ∶∶ NP → Dynamic ((object → Prop) → Prop) → Env → Env
pushNP pron referent 𝜌 x = if x ≡ pron then referent else 𝜌 x

Using pushNP, we can implement (non-anaphoric) NPs easily. For example, the
semantics of the proper name “Mary” is as follows, where mary is understood
to be the underlying representation of the individual:

J MaryK = do
𝜌 ← get
set (pushNP "she" (return (𝜆P → P mary)) 𝜌)
...
return (𝜆P → P mary)

(In the full implementation we update all pronouns which can (co-)refer to
“Mary”, such as “her”, “hers”, “herself”, etc. — We explain how reflexives are
handled in Section 3.7.) We proceed with showing how anaphoric expressions
can be interpreted. For instance, the pronoun “her” is implemented as follows:

J herK = do
𝜌 ← get
np ←𝜌 "her"
np

Consider now the following full example:

(1) John loves Mary. Bill likes her.

In (1), upon encountering the phrase “Mary”, our system will modify the envi-
ronment such that further lookup for “her” will return (𝜆P → P mary). More
pedantically, any effect combined with the effect of JMaryK will be affected in
this manner. While straightforward, the mechanism described above allows to
account for a large number of anaphoric phenomena (sometimes requiring local
extension). The rest of this section describes such account.

3.2 Refinement: Category-general anaphora
In the examples seen so far, anaphoric expressions have been referring to noun-
phrases exclusively. Thus, the domain of the environment could be only NP
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anaphora. Yet, English features anaphoric expressions for many syntactic cat-
egories, including at least adjectival phrases (AP), common nouns (CN), two-
place common-nouns (CN2), verb phrases (VP) and transitive verb phrases
(VP2). 3

In the table below, we provide a number of examples of anaphora for various
syntactic categories. We put the anaphora in square brackets and the referent
in curly braces.

(2) John owns an {old} car. He likes [such] cars. (AP)
(3) Mary owns an old {car}. John owns a red [one]. (CN)
(4) The population of France is greater than [that] of Germany. (CN2)
(5) Mary fell. John did too. (VP)
(6) Mary has {read} all the books that John [has]. (VP2)
(7) {John may arrive this evening}. If [so] I am very happy. (S)

From these examples, we see that the syntactic form for the anaphoric expression
determines the category of the referent. Thus, it is easy to choose the part of
the environment to look for that referent. We can account for this phenomenon
with a two-fold move:

• extending the environment so that there is a map for every possible syn-
tactic category. Ideally this would be done as follows:

type Env =
(Cat ∶ Category) → (phrase ∶ Cat) → Dynamic (Semantics Cat)

But since such dependent types are not supported by Haskell, we instead
identify all categorical phrases for the second argument, using dynamic
checks to tell them apart:

type Env = (Cat ∶ Category) → Phrase → Dynamic (Semantics Cat)

• updating the environment for the appropriate category when encountering
the referent and looking up the appropriate category when encountering
the anaphora.

Using this technique we can account for cases such as the following:

(8) Mary fell. John did too.

The interpretation of the relevant constituents are as follows. When interpreting
“fell”, we push it in the environment for VP’s, and when interpreting “did too”,
we look up this information.

J fellK = do
modify (pushVP (return fell))

3The semantic interpretations of these categories are given in Section 4.1. In traditional
terms, CN and CN2 anaphora correspond to NP and complex NP anaphora respectively.
Similarly, VP2 anaphora is known as Antecedent Contained Deletion.
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return fellJ do tooK = do
𝜌 ← get
vp ←𝜌 VP
vp

As an aside, one should note that, sometimes, the interpretation pushed in
the environment should not be exactly the same as its pure semantics. We
see an instance of this phenomenon in (7), where the sentence to put in the
environment is that without the modal operator: “John arrives this evening”.

3.3 Anaphora with definite descriptions
Using the same mechanism of environment lookup, one can account for anaphora
involving definite descriptions. The idea is that whenever an NP is encountered,
its denotation is pushed into the environment. When a definite NP of the form
definite article followed by CN is encountered, one can lookup the environment
for denotations which belong to the type described by this CN. (This lookup
can only be algorithmic when CN types are decidable — but this is generally
the case.)

(9) A donkey leaves. The donkey is tired.
(10) A donkey leaves. The mule is tired.

If, for some reason, no denotation from the environment satisfies the predi-
cate (as in (10)), then one must assume that the definite NP must refer to an
unknown entity, perhaps because the discourse is incomplete. 4

Here, we restrict ourselves to examples where the referent is introduced in
the linguistic context. But in general, there are cases where definites refer
to an object in the situation of utterance or cases where there is an appeal
to the entities that the hearer has knowledge of (and shares most probably
with the community), or more generally can conceive of. For such cases, we
propose to use the same mechanism. The only difference is that one needs a
richer context for the anaphoric search. Examples of the first kind are sentences
like please, pass me the salt where some form of visual stimuli is at play (the
hearer actually sees “the salt”), while examples of the second kind, sentences
like have you seen the bridesmaids? in the context of a wedding (and taken to
be the first utterance in the situation). This can be achieved in a system where
visual stimuli are taken and/or background/common ground information are
part of the anaphoric search space. For more information on the categorization
of anaphoric definite descriptions, the interested reader is directed to the work
of Hawkins (2015). For a comprehensive overview of the research on definite
descriptions, please consult Vieira (1998).

4Lebedeva (2012) and Groote and Lebedeva (2010) propose to use an exception handling
mechanism to introduce new discourse referents for definite NPs when they are missing. We
could do the same here, but refrain from doing so for conciseness.
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3.4 Referring to the most recent occurrence
The environment update procedure that we use always overwrites whatever the
map contained. Consequently, the order of composition of effects thus dictates
the preferred referent. In particular, if the syntax is evaluated left-to-right, ref-
erences will point to the rightmost occurrence preceding the anaphora. Martin
and Pollard (2012) propose an example that can be solved this way:

(11) 1. A donkey and a mule walked in.
2. The donkey was sad.
3. It brayed.

(12) 1. A donkey and a mule walked in.
2. The mule was sad.
3. It brayed.

In both (11) and (12), “it” will refer to the most recent neutral singular noun
phrase seen. That is, “The donkey” for (11) and “The mule” for (12).

3.5 Earlier referents
In some cases, pronouns seem to be able to refer to earlier referents:

(13) {John} slapped Bill. [He] hurt his hand.

It appears that the rule to refer to the most recent possible referent can
be neglected if pragmatic factors disagree. This can be accounted for in our
framework by retaining the history of all possible referents in the environment (of
reasonable size; a human working memory being finite), and return all possible
readings. Additionally we can possibly weigh those readings to prefer recent
occurrences, all else being equal. Conveniently, returning multiple results can
be done using a monad which can furthermore be combined with the state
monad (Shan, 2002). We refer the reader to Erwig and Kollmansberger (2006)
on how to construct a monad with weighted results.

3.6 Strict and sloppy anaphora
Sometimes the referent of an anaphoric expression contains an anaphoric ex-
pression itself, as in the following example:

(14) John loves his wife. Bill does too.

The following two readings of (14) are possible:

1. love(wifeof(john),john) × love(wifeof(john),bill)

2. love(wifeof(john),john) × love(wifeof(bill),bill)
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We explain these interpretations as follows. In the so called strict reading
1., the referent for “so does” is taken to be the interpretation of “his wife” in its
context of occurrence (i.e. John’s wife), while in the second one, the reference
is taken to be the effectful, dynamic semantics of “his wife” (i.e. the meaning
should be re-interpreted in the environment at the point of occurrence of “so
does”).

Our framework is equipped to account for either reading. The first reading
can be explained with the following interpretation for “loves”:

J love K object = do
o′ ← object Other
let vp = (𝜆x → love (x, o′))
modify (push (VP, "do too") (return vp))
return vp

The above says that one begins by evaluating the direct object of the verb to
a pure interpretation, o′, and push the semantic verb phrase 𝜆x → love (x, o′)
onto the environment, without any effect, by using return. We can also explain
the second reading, by adapting only the interpretation of “love”, as follows:

J love K object = do
modify (push (VP, "do too") (Jlove K object))
o′ ← object Other
return (𝜆x → love (x, o′))

First, the effect of “loves his wife” is to push Jloves K Jhis wifeK onto the envi-
ronment. Then, upon resolution of “so does”, one will perform the following
effects:

• fetch (JlovesK Jhis wifeK) from the environment

• then evaluate (JlovesK Jhis wifeK) in the environment 𝜌, where in particular
𝜌(𝑁𝑃 , "ℎ𝑖𝑠") = 𝐵𝐼𝐿𝐿

• obtain 𝜆x → love (x,wifeof (Jhis K 𝜌))
• and finally evaluate the above to 𝜆x → love (x,wifeof (bill))
The careful reader may worry that, because the interpretation Jlove K object

contains a reference to itself, its evaluation may not terminate. First, let us note
that JloveKobject is itself a function, which is not called before being pushed into
the environment: its calling is delayed until it is looked up by Jso doesK. Second,
even when it is called a second time, it is re-pushed onto the environment, but
this time it will not be looked up again, and evaluation can terminate. Hence,
unless the utterance itself contains recursive references, there is no termination
issue.

The exact same mechanism accounts for “lazy pronouns” (Geach, 1962), in
sentences such as follows:
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(15) The man who gave {his paycheck} to his wife was wiser than the one who
gave [it] to his mistress. (Karttunen, 1969)

(16) Bill wears {his hat} every day. John wears [it] only on Sundays.

In the above cases, we see that the referent itself contains an anaphoric ex-
pression, which is thus subject to the second stage of interpretation. As in the
previous example, in certain contexts the strict interpretation is preferred. (Say
if it is known that Bill shares a hat with John.) We can account for it by pushing
the evaluated semantics in the environment.

The selection between strict and sloppy readings can depend on various
factors (lexical, pragmatic, etc.), which are out of scope of this paper. If many
readings need to be returned, we would need to extend our monad with non-
determinism, as it is explained in Section 4.2.

3.6.1 Sloppy anaphoric readings with agreement mismatches

In certain cases, the re-interpretation is not only done sloppily, but when doing
so the referent should ignore agreement rules. Consider:

(17) John {wears his hat on Sundays}. Mary [does too].

In this case, to obtain the preferred reading, one should relax the meaning of
“his” when re-evaluating Jwears his hat on SundaysK in a gender-agnostic way
so that “his” could refer to “Mary”. To do so, we need to conjure-up a gender
agnostic pronoun “his-or-her-or-its” and interpret “his” as this pronoun when-
ever we push a phrase into the environment, such as Jwears his hat on SundaysK.
One can extend this mechanism to other features, such as number, accounting
for examples such as the following one.

(18) John {wears his hat on Sundays}. His colleagues [do too].

In this implementation, we add a flag in the environment which activates
sloppy anaphora resolution. This flag is activated locally when re-interpreting
a VP:

sloppily ∶∶ Dynamic a → Dynamic a
sloppily = withState (𝜆Env {. .} → Env {envSloppyFeatures = True, . .})J do tooK = do

𝜌 ← get
vp ←𝜌 VP
sloppily vp

3.7 Reflexive anaphora
Referents which are co-arguments with the anaphoric element cannot be referred
to by usual pronouns. Instead their “-self” suffixed variant should be used.

(19) {Bill} is handsome. John loves [him].
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(20) Bill is handsome. {John} loves [himself].

Embedded phrases needs to be referred by the usual pronoun though:

(21) Bill’s wife loves [him].
(22) Bill’s wife loves #himself.

To account for this phenomenon, NPs must have a different behavior de-
pending on their role (direct argument to VP or not). Thus we must change
their interpretations accordingly:

type NP = Role → Dynamic ((Object → Row) → Row)
data Role = DirectArgument ∣ OtherJ Mary K DirectArgument = do

𝜌 ← get
set (pushNP "herself" (return (𝜆P → P mary)) 𝜌)
return (𝜆P → P mary)

The predication of a VP must then pass the appropriate role to NPs. Ad-
ditionally, when the sentence is complete, the environment must be updated to
replace any pronoun suffixed by -self with the non-suffixed version. This is what
clearRole does in the definition below:

predVP ∶∶ NP → VP → Dynamic
predVP np vp = do

np′ ← np DirectArgument
vp′ ← vp
modify (clearRole vp′)
return (np′ vp′)

3.8 Exophoric reference and deixis
Exophoric reference concerns cases where the element referred to is not part
of the linguistic context but rather the situational one. Deictic elements are
prototypical exophors, as witnesses the example below where both this and that
function as exophoric elements:

(23) This car is so much better than that one.
(24) A man is standing over there.

Besides deictic expressions, regular pronouns can function as exophors (ex-
ample taken from (Huang, 2005)):

(25) (Referents in the physical context, and with selecting gestures) He1’s not
the managing director. He2 is.
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Exophoric references are easily accounted by extending the environment with
situational referents, which vary according to the general context. For example,
the phrase “your car” should be evaluated in a context where all second person
pronouns are mapped to appropriate values depending on the intended audience.

In practice, this means that our account can be integrated with a multimodal
system, in such a way that a perceptual input is available as an extension of the
environment. Such an integration will depend on the details of the multimodal
system — we do not pursue it further here.

3.9 Anaphoric scope flexibility: donkey sentences and E-
Type pronouns

In this section, we take a look at cases of anaphora that require some scope
flexibility. We discuss simpler cases like (26) and proceed to more difficult cases
of e-type and donkey anaphora, showing that our effectful semantics combined
with intuitions from constructive type-theories gives a natural way of capturing
the scope flexibility associated with anaphora in a natural language. We finish
the section by describing a systematic, algorithmic procedure for scope extension
which subsumes all the cases presented in the section.

(26) Every student admits that [he] is tired

In (26), the pronoun “He” refers to the variable bound by “every”, which, strictly
speaking, is not found in the syntax.

We can account for referents bound by quantifiers by using a suitable inter-
pretation for quantifiers. We detail below the case of the quantifiers “every”
and “some”. Other quantifiers can be dealt with in a similar manner.

To interpret the phrase “every CN”, we perform the following steps:

1. allocate a fresh variable (say x)

2. evaluate the common noun CN, obtaining a type T, and possibly affecting
the environment.

3. associate the appropriate pronouns to point to x (according to the gender
and number of the common noun which the quantifier applies to). Such
a pronoun is a donkey pronoun: it points to an object x which is valid
semantically, but not manifest in the syntax.

4. return the logical predicate 𝜆p →∀(x ∶ T). (p x).
Formally:

every ∶∶ CN → NP
every cn = do

x ← getFresh
t ← cn
modify (pushNP (pronoun cn) (𝜆p → p x))
return (𝜆p →∀(x ∶ t). (p x))
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Note that there cannot be a reference to x within cn, because x is pushed onto
the environment only after evaluating cn.

3.9.1 Scoping with universal quantifiers

We underline that, according to our algorithm, all the effects associated with the
quantifier persist even after closing the logical scope of a universal quantifier.
This phenomenon is known as telescoping, which was introduced by Roberts
(1987) (see also (Poesio and Zucchi, 1992)). In particular, the referent is still
accessible. This allows us to interpret sentences such as (27) below.

(27) Every boy climbed on a tree. He is afraid to fall.
(28) Every boy climbed on Mary’s shoulders. He likes her.
(29) Every boy climbed on a tree and was afraid to fall.
(30) Bill is old. Every boy climbed on a tree. He is afraid to fall.

Our system interprets (27) as

(∀(x ∶ boy). → ∃(y ∶ tree). climbed (x, y)) ∧ afraidToFall (x)

The above formula is not well scoped: x is unbound in the right conjunct. Yet,
we regard our interpretation as as-satisfactory-as possible, because:

• it reflects the infelicitous character of sentences such as (27) (which is
perhaps more clear in (28)).

• because any variable is bound at most once (every bound variable is fresh),
it is possible to perform minimal scope extension separately from anaphora
resolution to repair the sentence and obtain a reading equivalent to (29):

∀(x ∶ boy). (∃(y ∶ tree). climbed (x, y)) ∧ afraidToFall (x)

An alternative algorithm, proposed by Unger (2011), is to remove donkey
pronouns from the context when the sentence which introduce them is com-
plete. While logically consistent, such an approach has weaknesses. First, it
precludes interpreting (27) at all, and thus (by default) also precludes any im-
plicit repair by scope extension. Second, and perhaps worse, it makes further
pronouns oblivious to quantifiers. Indeed, with this interpretation, in (30), the
pronoun “he” refers unambiguously to “Bill”, while we believe that the pre-
ferred interpretation is that “He” attempts to refer to “Every boy” (embracing
the awkwardness).

3.9.2 CN scoping

Another consequence of letting all effects persist is that the referents introduced
in the argument of the quantifier (CN) can be freely referred to later. This makes
possible to correctly interpret (31), and even (32) albeit with a complicated
scope-repair pass.
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(31) Every boy climbed on a tree. It fell.
(32) Every committee has a chairman. He is appointed by its members.

We note in passing that in (31), after scope-resolution the existential quantifier
will be the outermost one.

3.9.3 Scoping with existential quantifiers

While we regard the scope extension of universal quantification somewhat infe-
licitous, no such problem generally occurs with existential quantification alone.

(33) A boy climbed on a tree. [He] is afraid to fall.

In (33), the pronoun “He” refers unambiguously to the boy introduced in the
first sentence. Combined with Ranta’s analysis (Ranta, 1994), our framework
offers an explanation for lack of awkwardness by appealing to constructive logic.
If one interprets existential quantification constructively, one obtains 𝑠 ∶ Σ(𝑥 ∶
𝐶ℎ𝑖𝑙𝑑)Σ(𝑦 ∶ 𝑇 𝑟𝑒𝑒).𝑐𝑙𝑖𝑚𝑏𝑒𝑑(𝑥, 𝑦) for the first sentence. But, when the scope
of Σ is closed, one can substitute 𝑠.𝑥 (the first component of Σ) for 𝑥 in the
environment and interpret references without any need for scope extension.

We note in passing that if one uses a type-theory with records (be it an
eponymous theory like the TTR of Cooper (2017) or any proof assistant which
happens to provide records), one can conveniently substitute record meet for
conjunction, thereby avoid any substitution in the environment.

[𝑥 ∶ 𝐵𝑜𝑦, 𝑦 ∶ 𝑇 𝑟𝑒𝑒] ∧ [𝑥 ∶ 𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙, 𝑦 ∶ 𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙, 𝑝 ∶ 𝑐𝑙𝑖𝑚𝑏𝑒𝑑(𝑥, 𝑦)]
= [𝑥 ∶ 𝐵𝑜𝑦, 𝑦 ∶ 𝑇 𝑟𝑒𝑒, 𝑝 ∶ 𝑐𝑙𝑖𝑚𝑏𝑒𝑑(𝑥, 𝑦)]

(In Unger’s account (Unger, 2011), existential quantifiers are left implicit. Only
in a subsequent phase, existential quantification is added at the outermost pos-
sible scope. While this scheme works in many cases, it is unclear that using the
outermost scope is always the best solution. We prefer to extend scope on a
per-quantifier basis for a more fined-grained semantics.)

3.9.4 Scoping with implication

(34) If a man is tired, he leaves.

Our system interprets the above sentence as

(∃(𝑥 ∶ 𝑚𝑎𝑛).𝑡𝑖𝑟𝑒𝑑(𝑥)) → 𝑙𝑒𝑎𝑣𝑒(𝑥)

where 𝑥 as a free occurrence. As discussed above for simple existentials, con-
structive type-theory informs that scope extension poses no problem whatsoever.
Thus our solution is to systematically lift quantifiers in the premise to scope over
an implication. Such a lifting does not change the reading of the sentence when
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the variable does not occur in the conclusion. It should be noted however that
the quantifier changes polarity in this case.5 Thus we obtain:

∀(𝑥 ∶ 𝑚𝑎𝑛).𝑡𝑖𝑟𝑒𝑑(𝑥) → 𝑙𝑒𝑎𝑣𝑒(𝑥)

The following example sheds some light as for why we attach the domains
to the quantifiers.

(35) A man leaves if he is tired.

If we use predicates for CN, then the direct interpretation of the above sentence
is

𝑡𝑖𝑟𝑒𝑑(𝑥) → (∃𝑥.𝑚𝑎𝑛(𝑥) ∧ 𝑙𝑒𝑎𝑣𝑒(𝑥))
and in this case logic dictates that there should be no polarity shift when lifting
the quantification, thus we would get

∃𝑥.𝑡𝑖𝑟𝑒𝑑(𝑥) → 𝑚𝑎𝑛(𝑥) ∧ 𝑙𝑒𝑎𝑣𝑒(𝑥)

which appears nonsensical (being tired implies being a man). Now, if we extend
the scope of the quantifier with a domain, we obtain instead the following much
more sensible interpretation:

∃(𝑥 ∶ 𝑚𝑎𝑛).𝑡𝑖𝑟𝑒𝑑(𝑥) → 𝑙𝑒𝑎𝑣𝑒(𝑥)

3.9.5 Prototypical donkey sentence

Consider the following sentence, famously referred to as the donkey sentence in
the literature:

(36) Every man that owns a donkey beats it.

The compositional interpretation of the donkey sentence is:

∀(𝑥 ∶ 𝑀𝑎𝑛).(∃(𝑦 ∶ 𝐷𝑜𝑛𝑘𝑒𝑦).𝑜𝑤𝑛(𝑥, 𝑦)) → 𝑏𝑒𝑎𝑡(𝑥, 𝑦)

On the face of it, one must extend the scope of 𝑦 so that 𝑦 is accessible in
beat (x, y). Extending the scope yields the following formula (Ranta, 1994):

∀(𝑥 ∶ 𝑀𝑎𝑛).∀(𝑦 ∶ 𝐷𝑜𝑛𝑘𝑒𝑦).𝑜𝑤𝑛(𝑥, 𝑦) → 𝑏𝑒𝑎𝑡(𝑥, 𝑦)

or the logically equivalent

∀(𝑧 ∶ Σ(𝑥 ∶ 𝑀𝑎𝑛)(𝑦 ∶ 𝐷𝑜𝑛𝑘𝑒𝑦).𝑜𝑤𝑛(𝑥, 𝑦)) → 𝑏𝑒𝑎𝑡(𝑧.𝑥, 𝑧.𝑦)

Which itself appears to say: “every man beats every donkey that he owns”.
However, that is not the only available reading. Indeed, there is another reading,

5In dynamic semantics, the observation that ∃𝑥.𝜙 → 𝜓 ⇔ ∀𝑥.(𝜙 → 𝜓) is known as Egli’s
corollary (Egli, 1979); it is a consequence of declaring that (∃𝑥.𝜙) ∧ 𝜓 and ∃𝑥.(𝜙 ∧ 𝜓) are
equivalent without requiring that 𝑥 is not free in 𝜓 (when 𝑥 is not free in 𝜓, this equivalence
holds in usual logics).
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which for some is also the preferred one, commonly referred to as the weak
reading of donkey sentences: given any 𝑥 ∶ 𝑀𝑎𝑛, we could find one owned
donkey being beaten; not every one of them.

One way to repair the logical statement is to ensure that the sub-formula
∀(𝑦 ∶ 𝐷𝑜𝑛𝑘𝑒𝑦).𝑜𝑤𝑛(𝑥, 𝑦) → 𝑏𝑒𝑎𝑡(𝑥, 𝑦) can be used only once for any given man
𝑥.

Ensuring that hypotheses can be used once is the foundational principle
of Girard’s linear logic (Girard, 1987). In this case, we would consider an
assumption 𝑎 of type ∀(𝑦 ∶ 𝐷𝑜𝑛𝑘𝑒𝑦).𝑜𝑤𝑛(𝑥, 𝑦) → 𝑏𝑒𝑎𝑡(𝑥, 𝑦) as a resource, which
can be used only once. We can also say that 𝑎 is a linear hypothesis. Thus, if we
combine, by modus-ponens 𝑎 with a donkey 𝑑 such that 𝑜𝑤𝑛(𝑥, 𝑑), to eventually
concude 𝑏𝑒𝑎𝑡(𝑥, 𝑑), then we cannot use 𝑎 again to conclude 𝑏𝑒𝑎𝑡(𝑥, 𝑦) for any
other donkey 𝑦.

We now need to take the conjunction of ∀(𝑦 ∶ 𝐷𝑜𝑛𝑘𝑒𝑦).𝑜𝑤𝑛(𝑥, 𝑦) → 𝑏𝑒𝑎𝑡(𝑥, 𝑦)
for every man 𝑥. This type of conjunction is not usually found in variants of
linear logic, but it simply a generalisation of the tensor operator (⊗). Indeed, in
linear logic given the linear hypothesis (𝐴⊗𝐵), then one can obtain both 𝐴 and
𝐵, and each of them linear as well. Thus we can to use a generalized tensors
over all men, written ⨂𝑥∶𝑀𝑎𝑛. Even though this operator may not make sense
over infinite sets, it is not worrying because most sets manipulated linguistically
(such as the set of men) satisfy this condition. The whole sentence can now be
interpreted as the following linear assumption:

⨂
𝑥∶𝑀𝑎𝑛

∀(𝑦 ∶ 𝐷𝑜𝑛𝑘𝑒𝑦).𝑜𝑤𝑛(𝑥, 𝑦) → 𝑏𝑒𝑎𝑡(𝑥, 𝑦)

Additionally, we can (and probably should) not use linear logic as such but
its closely related variant, affine logic Grishin (1974), which allows to discard
hypotheses.

Thus we believe that donkey sentences are not problematic from the point
of view of dynamic semantics. Rather, what is crucial is the power of the under-
lying logic, together with correct scope-extension rules. In other words, donkey
sentences are problematic only if one uses incorrect scope extension rules or
uses a logical framework that cannot express a unique universal quantification.
For example Fox and Lappin (2008) achieve desired results by integrating set
cardinalities into the logical system.

3.9.6 E-type pronouns

Consider the following sentences:

(37) Most boys climbed on a tree.
(38) Most boys climbed on a tree. They were afraid to fall.
(39) Most boys climbed on a tree. Every boy that climbed on a tree was afraid

to fall.
(40) Most boys climbed on a tree and were afraid to fall.
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The generalized quantifier “most” can be interpreted as a weakened univer-
sal quantifier, hereafter written 𝑀𝑂𝑆𝑇 , so that (37) would be interpreted as
follows:

𝑀𝑂𝑆𝑇(𝑎 ∶ boy). ∃(𝑏 ∶ tree). climbed_on(𝑎, 𝑏)
Consequently, it would be possible to interpret references to the quantified vari-
able by using scope extension. If we do that, we would interpret (38) in the
same way as (40):

𝑀𝑂𝑆𝑇(𝑎 ∶ boy). (∃(𝑏 ∶ tree). climbed_on(𝑎, 𝑏)) ∧ afraid_to_fall(𝑎)

However, according to Evans (1980), the above interpretation is incorrect. In-
stead, the pronoun should refer exactly to the boys that climbed the tree, and
the semantics should be equivalent to that of (39):

(𝑀𝑂𝑆𝑇(𝑎 ∶ boy). ∃(𝑏 ∶ tree). climbed_on(𝑎, 𝑏))∧
(∀(𝑐 ∶ Σ(𝑑 ∶ boy). ∃(𝑒 ∶ tree). climbed_on(𝑑, 𝑒)). afraid_to_fall(𝑐))

Fortunately, there is a simple way to fix the problem. Namely, it suffices to
re-introduce the variable with the appropriate quantification once the scope of
𝑀𝑂𝑆𝑇 is closed. Thereby, if scope extension is needed, it is the latter quantifier
(not 𝑀𝑂𝑆𝑇 ) whose scope will be extended. Thus, the interpretation of example
(37) becomes:

(𝑀𝑂𝑆𝑇(𝑎 ∶ boy). ∃(𝑐 ∶ tree). climbed_on(𝑎, 𝑐))∧
(∀(𝑏 ∶ Σ(𝑎 ∶ boy). ∃(𝑐 ∶ tree). climbed_on(𝑎, 𝑐)). true)

Note in particular the use of a Σ-type to quantify over the appropriate set and
the use of the constant true to avoid making any statement when no continuation
of the the sentence is present.

An advantage of this interpretation is that it works well with any location
of the generalized quantifier. For example, the following sentence is interpreted
correctly.

(41) Mary owns a few donkeys. Bill beats them.

3.9.7 Scope extension algorithm

In sum, the fundamental idea is that we do not interpret linguistic strings di-
rectly to a well-behaved logic, but rather use an intermediate semantic repre-
sentation where there is a biunique relation between variable names and vari-
able binders. This representation allows us to identify the desired binder for
anaphoric expression regardless of semantic context. Pragmatic conditions on
pronoun accessibility are checked separately.

Having seen how this idea plays out empirically, we describe it in its full
generality in the rest of this section. The goal is to make sure that every variable
x is bound by a quantifier somewhere in the logical expression. Even though
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context polarity felicity
not ⋅ negative low
⋅ → M negative high
M → ⋅ positive high
⋅ � M positive high

Table 1: Possible polarity and felicity of a few contexts. The dot indicate the
position of the quantifier to lift.

anaphora resolution can create a reference out of scope of the corresponding
quantifier, the binder is guaranteed to exist somewhere in the formula. Hence,
the algorithm proceeds as follows.

1. If there is no free variable the expression is well-scoped and scope exten-
sion is thus complete. Otherwise, identify a variable which occurs free
somewhere in the formula and call it x. Locate its quantifier. Let us call
this quantifier ∇x (where ∇ can stand for ∀, ∃, 𝑒𝑡𝑐.). Note that because we
allocate a fresh variable for each of the quantifiers in our dynamic seman-
tics, the correspondence between variables and quantifiers is unambiguous
even when scoping is incorrect.

2. Identify the innermost expression containing ∇x. This expression has in
general the form of an operator (which we write ∘ here) applied to one or
two operands, such as: (∇x. M) ∘ N.

3. Determine the polarity of lifting in this context. The polarity is a function
of the operator and the position of the operand. (See table 1.)

4. Rewrite this expression by lifting the quantifier above the operator ∘. In
our example the result would be ∇x. (M ∘ N) if the operator is positive in
its first operand, and Δ𝑥.(𝑀 ∘ 𝑁) if the operator is negative in its first
operand and Δ is dual to ∇. (∀ is dual to ∃ and vice-versa.)6

Weigh down the likelihood of the interpretation according to the felicity
factor (See table 1.).

5. If the free occurrence of x was contained in N, it has now become bound.
If not, we have extended the scope of ∇x, and we can loop from step 2.
Because the formula is finite and each iteration extends the scope by a
strictly positive amount, we can be certain that this process terminates.

6. Loop from step 1. until no free variable occurrence remains.

Finally we recall that for scope extension to work, the domain of discourse
must be lifted together with the quantifier (see section 3.9.4).

6The dualisation of MOST and FEW can be problematic, but fortunately they rarely need
to be scope-extended. Indeed, we have seen that in our interpretation of e-type pronouns that
the variable bound by them is re-bound to a universal.
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Our approach to pronouns and their binding shares similarities with Dy-
namic Predicate Logic (DPL) of Groenendijk and Stokhof (1991) as we treat
pronouns as variables that are dynamically bound by quantifiers. That is, we
allow quantified noun phrases to extend their operational scope beyond the
clausal and sentential boundaries to bind variables that occur outside of the
clause where their occur.

In contrast to DPL, where only an existential quantifier is capable of binding
variables outside of its structural (standard) scope, in our approach, in addition
to the existential quantifier, the universal quantifier can bind free variables out-
side of its scope. The reason for doing so is to be able to account for discourses
such as (32), where universally quantified variables are referred by pronouns
outside of the sentence where they occur.

(42) John does not have a car. # It is fast.

(43) A wolf might enter. It would growl.
(44) A wolf might enter. # It will growl.

(45) Either there is no bathroom here or it is hidden.

In addition, we do not block any discourse referent, which is the case for
theories of dynamic semantics such as DPL: entities under the scope of negation
are not accessible outside of the scope (e.g. (42)). There are several reasons
for doing that. Firstly, when modal operators interact with negation, discourse
referents introduced under the scope of negated formula could be still accessible,
like it is in (43). Since the current approach does not deal with modals, to be still
able to give account to cases like (43), we prefer to make everything accessible
for further usage. Another reason is that dynamic theories, following DPL,
treat disjunction as purely static. In particular, given 𝜙∨𝜓, discourse referents
of 𝜙 are not accessible for 𝜓. However, there is still no consensus about the
issue (a commonly used counterexample to this static treatment is (45)).7 We
understand that the dynamization of all connectives (and, or, implication) and
the universal quantifier can lead to various problems for logic based dynamic
semantic theories as well as may allow for infelicitous discourses (e.g. (42) and
(44)). However, since still there is no clear enough criteria for distinguishing
phenomena that must be treated as dynamic from the ones that treated as static,
we prefer to allow incorrect readings rather than block valid interpretations in
certain cases. We provide Table 1 in lieu of the constraints found in dynamic
semantic theories as a current heuristic while reasoning about anaphora and
their bindings.

3.10 Cataphora
So far, our system captures cases where the referent precedes the anaphoric
element exclusively. In this section, we explain how the system is extended to

7We believe that pragmatic devices should be integrated more within dynamic semantics
in order to provide a more complete characterization of accessibility constraints (see (Shelley,
2011) for discussion).
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handle cataphora as well. Consider the following cataphoric cases:

(46) [He] was tired. Bill left.
(47) If Bill finds it, he will wear his coat.

Can we make “he” refer to “Bill”, even though the referent occurs after the
pronoun?

This can be supported by using a backward-traveling state monad, whose ⋆
operator is defined as follows. Note how the environment is threaded between
calls.

m ⋆ f = 𝜆𝜌0 → let (𝜌2, x) = m 𝜌1
(𝜌1, y) = f x 𝜌0

in (𝜌2, y)

The above looks a priori problematic because of the circular dependency:

• x depends on 𝜌1
• 𝜌1 depends on x

Yet, by using a non-strict evaluation strategy, as Haskell implements, one
can compute a result in all the cases where the cycle is broken dynamically.
That, if either

• the value of 𝑥 does not depend on 𝜌1 (for example if it does not contain a
cataphoric reference), or

• the value of f does not return an environment depending on x (the return
value of m).

It should be underlined that both forward and backward-traveling states
can be combined in a single monad, thus accounting for both anaphora and
cataphora. The bind operation for such a monad is the following:

m ⋆ f = 𝜆(𝜌0, 𝜎0) → let (𝜌2, 𝜎1, x) = m 𝜌1 𝜎0
(𝜌1, 𝜎2, y) = f x 𝜌0 𝜎1

in (𝜌2, 𝜎2, y)

Finally, contexts could be equipped with a measure of distance and heuristics
(lexical and pragmatic factors), which would allow us to choose between the
possible readings. We do not do this here, and instead all interpretations are
simply considered to be equally likely.

3.11 Bach-Peters Sentences
Karttunen (1971) defines a class of sentences, often referred to as Bach-Peters
sentences in the literature, characterised by internal circular anaphoric depen-
dency. Karttunen illustrates the issue with the following example:
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(48) The pilot who shot at it hit the Mig that chased him.

In 3.11, the pronoun “it” from the noun phrase “the pilot who shot at it” refers
to the same entity that is described by the noun phrase “the Mig that chased
him”, where the pronoun “him” refers to the entity referred by the noun phrase
“the pilot who shot at it”, which in turn is built with the help of the pronoun
“it”. So, there is a cyclic dependency between these two noun phrases.

As we discuss at length in the rest of the section, the definite determiner
(“the”) is another critical element of this class of sentences. For this reason, we
will be using a special-purpose quantifier in the object logic, written 𝑇ℎ𝑒(𝑥 ∶
𝐴)𝐵 which selects a member of the type 𝐴 and makes it available in 𝐵 as 𝑥. This
is reminiscent of Hilbert’s epsilon operator. The epsilon operator is sometimes
used in the literature (Egli1995-EGLTEO) to deal with other phenomena
discussed earlier. However, we prefer to use a quantifier which follows the form
of ∀ and ∃ instead: this allows a more general kind of reasoning, and is more
useful for scope extension.

In agreement with the algorithm for cataphora defined above, our framework
produces the following formula for example .

𝑇ℎ𝑒(𝑎 ∶ (Σ(𝑏 ∶ 𝑃𝐼𝐿𝑂𝑇).𝑠ℎ𝑜𝑡𝐴𝑡(𝑏, 𝑐)).(𝑇ℎ𝑒(𝑐 ∶ Σ(𝑑 ∶ 𝑀𝐼𝐺).𝑐ℎ𝑎𝑠𝑒𝑑(𝑑, 𝑎)).ℎ𝑖𝑡(𝑎, 𝑐)))

We see here that a well-formed logical formula can be produced. However,
in the above form, 𝑐 is not bound at its first occurence. Unfortunately, one
cannot apply the scope-extension algorithm exactly as described above in this
case. Indeed, attempting to swap the order of the “The” quantifiers results in
a formula where 𝑎 is not bound.

It is sometimes believed that the main reason for the difficulty in analysis is
the circularity of anaphoric expression. However, another key ingredient is the
use of a definite determiner in the second position. To see this, One can instead
use an indefinite article for “Mig” (the second occurence of definite), and thus
bind it existentially, as in the following example:

(49) The pilot who shot at it hit a Mig that chased him.

Then, a possible interpretation is the following:

𝑇ℎ𝑒(𝑎 ∶ (Σ(𝑏 ∶ 𝑃𝐼𝐿𝑂𝑇).𝑠ℎ𝑜𝑡𝐴𝑡(𝑏, 𝑐))).∃(𝑐 ∶ (Σ(𝑑 ∶ 𝑀𝐼𝐺).𝑐ℎ𝑎𝑠𝑒𝑑(𝑑, 𝑎))).ℎ𝑖𝑡(𝑎, 𝑐)

In this case, we can transform the formula to the following variant:

𝑇ℎ𝑒(𝑎 ∶ (Σ(𝑏 ∶ 𝑃𝐼𝐿𝑂𝑇).𝑠ℎ𝑜𝑡𝐴𝑡(𝑏, 𝑑))).Σ(𝑑 ∶ 𝑀𝐼𝐺).𝑐ℎ𝑎𝑠𝑒𝑑(𝑑, 𝑎) ∧ ℎ𝑖𝑡(𝑎, 𝑑)

which could in turn be potentially scope-extended to:

Σ(𝑑 ∶ 𝑀𝐼𝐺).𝑇ℎ𝑒(𝑎 ∶ (Σ(𝑏 ∶ 𝑃𝐼𝐿𝑂𝑇).𝑠ℎ𝑜𝑡𝐴𝑡(𝑏, 𝑑))).𝑐ℎ𝑎𝑠𝑒𝑑(𝑑, 𝑎) ∧ ℎ𝑖𝑡(𝑎, 𝑑)

The above formula is a direct interpretation of the following sentence:

(50) The pilot shot at a Mig that chased him and hit it.
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Notice that the sentence (50) is comprised of two statements connected by the
conjunction and. There is no circularity in the anaphoric dependency any more.
However, while the sentences 3.11 and (50) are similar, their truth conditions
are different: (50) is false in the case the pilot did not shot at the Mig, whereas
such a claim would not work in the case of 3.11, because the noun phrase already
restricts the situations only to those where the pilot shot at the Mig. Therefore,
the change of quantifier that we performed is not semantic-preserving.

Having seen that the existential representation must be rejected, we return
to the original form

𝑇ℎ𝑒(𝑎 ∶ (Σ(𝑏 ∶ 𝑃𝐼𝐿𝑂𝑇).𝑠ℎ𝑜𝑡𝐴𝑡(𝑏, 𝑐)).(𝑇ℎ𝑒𝑐 ∶ (Σ(𝑑 ∶ 𝑀𝐼𝐺).𝑐ℎ𝑎𝑠𝑒𝑑(𝑑, 𝑎)).ℎ𝑖𝑡(𝑎, 𝑐)))

There is in fact a possible scope-transformation which makes both the pilot (𝑎)
and the Mig (𝑐) in scope for ℎ𝑖𝑡(𝑎, 𝑐). The key is to simultaneously choose both
the pilot and the Mig as a pair, from the relevant type. We write the result
using record notation, as follows:

𝑇ℎ𝑒(𝑝 ∶ ([𝑎 ∶ 𝑃𝐼𝐿𝑂𝑇 ; 𝑐 ∶ 𝑀𝐼𝐺].𝑠ℎ𝑜𝑡𝐴𝑡(𝑎, 𝑐) ∧ 𝑐ℎ𝑎𝑠𝑒𝑑(𝑐, 𝑎))).ℎ𝑖𝑡(𝑝.𝑎, 𝑝.𝑐)

For completeness, we can examine what happens when the “the” quantifier
in the first position is substituted by a universal quantifier:

(51) Every pilot who shot at it hit the Mig that chased him.

The interpretation exhibits the same substitution:

∀(𝑎 ∶ (Σ(𝑏 ∶ 𝑃𝐼𝐿𝑂𝑇).𝑠ℎ𝑜𝑡𝐴𝑡(𝑏, 𝑐)).(𝑇ℎ𝑒(𝑐 ∶ Σ(𝑑 ∶ 𝑀𝐼𝐺).𝑐ℎ𝑎𝑠𝑒𝑑(𝑑, 𝑎)).ℎ𝑖𝑡(𝑎, 𝑐)))

Here, again, quantifiers cannot be swapped, but it is valid to transform the pair
of quantifiers into a universal quantifier over a pair:

∀(𝑝 ∶ ([𝑎 ∶ 𝑃𝐼𝐿𝑂𝑇 ; 𝑐 ∶ 𝑀𝐼𝐺].𝑠ℎ𝑜𝑡𝐴𝑡(𝑎, 𝑐) ∧ 𝑐ℎ𝑎𝑠𝑒𝑑(𝑐, 𝑎))).ℎ𝑖𝑡(𝑝.𝑎, 𝑝.𝑐)

In sum, to handle Bach-Peters sentences we need the following elements:

• a specific 𝜀-like quantifier (“The”) must be used to represent definites;

• a specific scope-extension rule dealing with this quantifier: when the quan-
tifer 𝑇ℎ𝑒 is a candidate for scope extension over another quantifer ∇𝑥 ∶ 𝐶,
and the domain of “The” mentions the variable of this domain, we trans-
form the formula into a ∇-quantification over a pair (otherwise the usual
transformation applies):

∇(𝑥 ∶ 𝐴).𝑇ℎ𝑒(𝑦 ∶ 𝐵).𝐶⟶∇(𝑝 ∶ [𝑥 ∶ 𝐴, 𝑦 ∶ 𝐵]).𝐶

where we subsitute 𝑝.𝑥 for 𝑥 and 𝑝.𝑦 for 𝑦 in 𝐶.
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4 Implementation
If we have already presented snippets of code in the above, they have been often
simplified, for pedagogical purposes. In this section we will show and comment
a portion of the actual implementation, so one can see how big the gap between
theory and practice is. In this section we will assume familiarity with Haskell
and its standard library.

4.1 Dynamic Semantics
First we show the definition of types which serve as the interpretation of syn-
tactic categories.

type Dynamic a = State Env a
type S = Dynamic Prop
type VP = Dynamic (Object → Prop)
type VP2 = Dynamic (Object → Object → Prop)
type CN = Dynamic (Type,Gender,Number)
type CN2 = Dynamic ((Object → Type),Gender,Number)
type NP = Role → Dynamic ((Object → Prop) → Prop)

The above types are already informative: they limit the way the dynamic se-
mantics can be influenced by generated propositions. For the sake of example,
let us consider the case with VP. We see that to obtain the proposition one must
first evaluate the effect, and only then one can obtain a predicate on objects.
Thus the content of the predicate cannot influence the effect associated with the
VP. (However, in the scope extension phase there is a deep interaction between
effects and propositions, via variable bindings.)

data Env = Env {vpEnv ∶∶ VPEnv,
vp2Env ∶∶ VP2,
apEnv ∶∶ AP,
cn2Env ∶∶ CN2,
objEnv ∶∶ [(Descriptor,NP)],
cnEnv ∶∶ NounEnv,
envThings ∶∶ Prop → Object,
envSloppyFeatures ∶∶ Bool,
freshVars ∶∶ [String]}

The environment contains:

• For each category, the phrases which can be possibly referred to by anaphora.

• A map of propositions to objects; to interpret definite determiners.

• A flag indicating whereas pronoun features should be interpreted sloppily
(ignoring agreement rules) or strictly (envSloppyFeatures).
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• A list of fresh variables, to be used with binders. (To avoid variable
capture.)

In objEnv, descriptors allow to determine whether a pronoun can refer to its
associated NP or not.

data Descriptor = Descriptor {dGender ∶∶ Gender
, dNumber ∶∶ Number
, dRole ∶∶ Role}

The code which is responsible for pushing and looking up objects in the envi-
ronment follows.

pushNP ∶∶ Descriptor → NP → Env → Env
pushNP d o1 Env { . .} = Env {objEnv = (d, o1) ∶ objEnv, . .}
type ObjQuery = Descriptor → Bool
getNP ∶∶ ObjQuery → Env → NP
getNP Env {objEnv = [ ]} = \_role →

return (𝜆vp → vp (constant "assumedObj"))
getNP q Env {objEnv = ((d, o) ∶ os), . .} =

if q d then o
else getNP′ q Env {objEnv = os, . .}

4.2 Missing parts
This implementation is faithful to most of the theory developed above. As
previously indicated, for simplicity of presentation some features are not imple-
mented. We repeat them here:

• We do not attempt to associate a felicity score to interpretations. The
reason for this omission is concision: felicity mostly depends on world
knowledge, lexical subtleties and pragmatics. These aspects are largely
irrelevant to our focus.

• We leave exophoric and deictic references abstract. Indeed a concrete
interpretation would depend on an application using the implementation.

• We ignore modalities in the re-interpretation of referents in the 𝑆 category.

5 Evaluation
To evaluate our framework, we have constructed an implementation, as de-
scribed above. We have then fed it a set of examples and checked the output
for correctness. These examples are meant to showcase the strengths of our
framework, but also reveal some of its weak spots.

A question that might arise is: why did we not use simply the FraCaS suite,
which provides a section on anaphora with 27 examples? The answer is multi-
fold:
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1. FraCaS assumes a fully-fledged inference engine. In this paper we only
propose a method to generate formulas.

2. Additionally, FraCaS tests success via inference problems only. This
methodology tends to require examples with more context than necessary,
and thus distract from the point at hand (was the anaphora properly re-
solved?). It even sometimes requires to infer the background (116) (In this
paragraph numbers refer to examples in the anaphora section of FraCaS
(27 examples numbered from 114 to 141).)

3. Additionally, FraCaS does not test for several phenomena that we cap-
ture (definite articles, sentential anaphora, reference to recent occurrences,
etc.)

4. Several examples (117, 123-126, 131, 132, 138, 140, 141) rely on pragmatic
factors and world knowledge, which we do not support

5. Several examples have ambiguous readings (129, 130, 135, 136)

Regardless, some of the examples of our suite are either inspired by, or taken
straight from FraCaS (122, 133). In fact, while this paper was under review,
Bernardy and Chatzikyriakidis (2019) have implemented a variant of the algo-
rithms presented here together with an inference system. We refer the interested
readers to their work for more details on the combined system performance.

The complete results are shown in the appendix. The first entries match the
examples shown in the body of the paper. The remaining entries test additional
less important features and/or combinations of features. For every example, we
show:

1. An English sentence

2. A possible parsing of that sentence, rendered with the operators that we
have defined in our library

3. The first possible interpretation of the above including anaphora resolution
done by our implementation. If all anaphoric expressions can be resolved,
then we show the corresponding result. If not, we show one with explicit
missing referents.

4. The above interpretation, after applying our algorithm for scope extension.

5. Optionally, a brief commentary of the example.

We stress that the formulas that we propose are not meant as the definitive
interpretation for any given example. They are meant simply to demonstrate
by example what our system is capable of (and what it is not capable of). Yet,
we believe that the set of examples itself can be used as a stepping stone to
construct an exhaustive test-suite for anaphora-resolution systems.
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6 Related work
Among other sources, this work builds upon previous work dealing with anaphora
either using constructive logics (Ranta, 1994) or monads on top of more stan-
dard logics, usually some variant of Montague Semantics (Unger, 2011; Charlow,
2015; Charlow, 2017). For some authors, including Ranta (1994), the algorith-
mic aspects of anaphora resolution are left unspecified and only the existence
of the referent in the logical formula seem to matter to the authors. The work
presented in this paper can be seen as making such systems more precise.

Ideas similar to those presented here can be found in a number of papers
by de Groote and colleagues (Groote, 2006; Qian, Groote, and Amblard, 2016).
In their work, continuations are used to get dynamic effects similar to the ones
presented in this paper. 8 It is important to note that continuations have
the same expressive power as monads, and thus we could have equally built
our system around continuations. The continuation/monad distinction being a
matter of taste, what are the essential differences between this work and that
of de Groote and colleagues? First, while we embrace out-of-scope variables
and repair interpretations when possible, while de Groote et al. interpret scope
rigidly in function of syntax. Their approach means that either some references
will not be resolved, or that quantifiers scope can never be closed. This is why
we propose the above account, at the expense of not rejecting some incorrect
sentences. It would be illuminating to compare the predictions that our account
makes compared to the ones proposed by de Groote and colleagues on a large
representative corpus, but we are lacking the parsed data to do so. Second,
we have a focus on an automated implementation (witnessed by the test suite).
Third, de Groote et al. aim at supporting more linguistic phenomena, such
as modal subordination. While de Groote’s approach to dynamics of language
allows one to interpret a discourse as a logical form in a purely compositional
manner, the anaphoric antecedents of pronouns that are out of structural scope
of quantifiers are left unspecified; only the context from which they should be
selected is given. Yet another step is needed to select from the context the
right antecedents for the pronouns. The current work, by contrast, does that:
anaphoric pronouns are resolved to their antecedents, and it is a part of a
compositional interpretation. Since the basic premises of de Groote’s work are
compatible with ours, we believe that integrating their ideas with our work is
possible and can be beneficial. In particular, we would like to support modal
subordination as described in (Qian, Groote, and Amblard, 2016).

Another related approach to study natural language semantics, including
certain kinds of anaphora, was proposed by Maršík and Amblard (2016). They
instead of monads use effects and handlers, a theory developed by Plotkin and
Pretnar (2009). Effects and handlers can be encoded by monads, but to combine
them is easer than to combine monads in general (Hyland, Plotkin, and Power,
2006).

8While this paper was under review, Itegulov, Lebedeva, and Woltzenlogel Paleo (2018)
presented a demo to analyze anaphora within and across the sentences, including event ones,
based on de Groote and colleagues’ earlier work.
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Lastly, the idea of using re-interpreting effects to account for sloppy readings
has been proposed before by Charlow (2015) and Charlow (2017). In the way
we see it, our account takes the idea further by making systematic use of the
idea. Namely, every phrase should push itself into the environment for further
reference. Additionally, the account proposed here offers: more flexible scoping
rules and a complete, tested implementation, as well as scope extension.

7 Discussion and conclusion
In this paper, we have proposed a framework for dynamic semantics which is
comprised of the following two parts:

1. An anaphora-resolution mechanism which is based on context-dependent
re-evaluation of referents

2. A scope-extension mechanism

Either of these components, taken in isolation, is of moderate complexity. Yet,
together, they can account for a wide range of anaphoric phenomena. This latter
fact, together with a clear implementation as well as a test suite to measure the
effectiveness of the present account are the main merits of the presented work
as we see it.

In the future, we would like to extend our account to more anaphoric phe-
nomena that have been puzzling in the literature. One such phenomenon is
modal subordination, in particular accounting for contrasts similar to the ones
shown in the above listed examples, repeated as follows:

(52) A wolf might enter. It would growl.
(53) A wolf might enter. # It will growl.

Another issue that we would like to explore is the extension of the anaphora
test suite presented in this paper. The idea would be to build a complete
anaphora test suite, which could be used as a benchmark for various computa-
tional semantics.
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Appendix: Test suite
In the test suite we make heavy use of operators, to keep the examples concise,
and in fact, readable at all. The operators are infix notations for combinators
presented above, or variants thereof. We list only their types here. The complete
code (including all combinators and lexical items) is available as supplementary
material.

(!) ∶∶ NP → VP → S
(?) ∶∶ VP2 → NP → VP
(¿) ∶∶ NP → VP2 → VP
(###) ∶∶ S → S → S
(#) ∶∶ AP → CN → CN
_of ∶∶ CN2 → NP → CN
that ∶∶ CN → VP → CN
adVP ∶∶ VP → AdVP → VP

Sometimes the environment does not contain any appropriate referent for
NPs. In such a case we output “assumedNP”; If the NP is of the form “the cn”
and no object satisfying 𝑐𝑛 can be found, we output U(𝑐𝑛).

1. John loves Mary. Bill likes her.
(johnNP ! (lovesVP′ ? maryNP)) ### (billNP ! (likeVP ? herNP))
love(john,mary) ∧ like(bill,mary)

2. John owns an {old} car. He loves [such] cars.
(johnNP ! (own ? aDet (oldAP # carCN))) ### (heNP ! (lovesVP′ ? (suchDet carsCN)))
(∃(𝑎 ∶ [𝑏 ∶ car; 𝑝 ∶ old(𝑏)]). own(john, 𝑎)) ∧ (∀(𝑑 ∶ [𝑐 ∶ cars; 𝑝 ∶ old(𝑐)]). love(john, 𝑑))
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3. Mary owns an old car. John owns a red one.
(maryNP ! (own ? aDet (oldAP # carCN))) ### (johnNP ! (own ? (aDet (redAP # one))))
(∃(𝑎 ∶ [𝑏 ∶ car; 𝑝 ∶ old(𝑏)]). own(mary, 𝑎)) ∧ (∃(𝑐 ∶ [𝑑 ∶ car; 𝑝 ∶ red(𝑑)]). own(john, 𝑐))

4. The population of France is larger than that of Germany
the (populationCN2 ‵_of‵ francePN) ! (is_larger_thanV2 ? thatOf germanyPN)
larger(U(population(france)),U(population(germany)))

5. Mary fell. John did too.
(maryNP ! fellVP) ### (johnNP ! doesTooVP)
fell(mary) ∧ fell(john)

6. Mary has read all the books that john has.
maryNP ! (readV2 ? (every (book ‵that‵ (johnNP ¿ hasTooV2))))
∀(𝑎 ∶ [𝑏 ∶ book; 𝑝 ∶ read(john, 𝑏)]). read(mary, 𝑎)

7. John may arrive this evening. If [so] Bill will be happy.
johnNP ! (may (arriveVP ‵adVP‵ thisEvening)) ### (so ==> (billNP ! ishappy))
may(this_evening(arrive(john))) ∧ (may(this_evening(arrive(john))) → happy(bill))
Remark: Incorrect: the sentence needs to be re-interpreted with another mood.

8. Mary fell. John did too.
(maryNP ! fellVP) ### (johnNP ! doesTooVP)
fell(mary) ∧ fell(john)

9. A donkey leaves. The donkey is tired.
(aDet donkey) ! leavesVP ### (the donkey ! isTiredVP)
(∃(𝑎 ∶ donkey). leaves(𝑎)) ∧ tired(𝑎)
∃(𝑎 ∶ donkey). leaves(𝑎) ∧ tired(𝑎)

10. A donkey leaves. The mule is tired.
(aDet donkey) ! leavesVP ### (the mule ! isTiredVP)
(∃(𝑎 ∶ donkey). leaves(𝑎)) ∧ tired(U(mule))

11. A donkey and a mule walked in. The donkey was sad. It brayed.
((aDet donkey) ‵andNP‵ (aDet mule) ! walkedInVP) ### (the donkey ! was_sadVP) ### (itNP !
brayedVP)
(∃(𝑎 ∶ donkey). walkedin(𝑎)) ∧ (∃(𝑏 ∶ mule). walkedin(𝑏)) ∧ was_sad(𝑎) ∧ brayed(𝑎)
∃(𝑎 ∶ donkey). walkedin(𝑎) ∧ (∃(𝑏 ∶ mule). walkedin(𝑏)) ∧ was_sad(𝑎) ∧ brayed(𝑎)

12. A donkey and a mule walked in. The mule was sad. It brayed.
((aDet donkey) ‵andNP‵ (aDet mule) ! walkedInVP) ### (the mule ! was_sadVP) ### (itNP !
brayedVP)
(∃(𝑎 ∶ donkey). walkedin(𝑎)) ∧ (∃(𝑏 ∶ mule). walkedin(𝑏)) ∧ was_sad(𝑏) ∧ brayed(𝑏)
(∃(𝑎 ∶ donkey). walkedin(𝑎)) ∧ (∃(𝑏 ∶ mule). walkedin(𝑏) ∧ was_sad(𝑏) ∧ brayed(𝑏))

13. {John} slapped Bill. [He] hurt his hand.
(johnNP ! (slappedV2 ? billNP)) ### (heNP ! (hurtV2 ? his handCN2))
slapped(john,bill) ∧ hurt(bill, the(hand(bill)))
Remark: Incorrect: we do not report all readings in this prototype. Choosing the correct reading
depends on pragmatic and lexical factors.

14. John loves his wife. Bill does too.
johnNP ! (lovesVP′ ? his wifeCN2) ### (billNP ! doesTooVP)
love(john, the(wife(john))) ∧ love(bill, the(wife(bill)))
Remark: Sloppy reading

15. The man who gave his paycheck to his wife was wiser than the one who gave it to his mistress.
the (man‵that‵((gaveV3‵appVP3‵his paycheckCN2)?his wifeCN2))!(is_wiser_thanV2?(the (one‵that‵

((gaveV3 ‵appVP3‵ itNP) ? his mistressCN2))))
wiser(U((Σ(𝑎 ∶ man). gave(the(paycheck(𝑎)), the(wife(𝑎)), 𝑎))),U((Σ(𝑏 ∶ man). gave(the(paycheck(𝑏)), the(mistress(𝑏)), 𝑏))))

16. Bill wears his hat every day. John wears it on Sundays.
(billNP!((wearV2?(his hatCN2))‵adVP‵everyday))###(johnNP!((wearV2?itNP)‵adVP‵onSundays))
everyday(wear(bill, the(hat(bill)))) ∧ on_sundays(wear(john, the(hat(john))))
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17. John wears his hat on Sundays. Mary does too.
(johnNP ! ((wearV2 ? (his hatCN2)) ‵adVP‵ onSundays)) ### (maryNP ! doesTooVP)
on_sundays(wear(john, the(hat(john)))) ∧ on_sundays(wear(mary, the(hat(mary))))

18. John wears his hat on Sundays. His colleagues do too.
(johnNP ! ((wearV2 ? (his hatCN2)) ‵adVP‵ onSundays)) ### (his colleaguesCN2 ! doesTooVP)
on_sundays(wear(john, the(hat(john))))∧on_sundays(wear(the(colleagues(john)), the(hat(the(colleagues(john))))))

19. Bill is handsome. John loves him.
(billNP ! isHandsomeVP) ### (johnNP ! (lovesVP′ ? himNP))
handsome(bill) ∧ love(john,bill)

20. Bill is handsome. John loves himself.
(billNP ! isHandsomeVP) ### (johnNP ! (lovesVP′ ? himSelfNP))
handsome(bill) ∧ love(john, john)

21. Bill’s wife loves him.
((billNP ‵poss‵ wifeCN2) ! (lovesVP′ ? himNP))
love(the(wife(bill)),bill)

22. Bill’s wife loves himself.
((billNP ‵poss‵ wifeCN2) ! (lovesVP′ ? himSelfNP))
love(the(wife(bill)),assumednp)
Remark: “himself” cannot be resolved in this instance. This is expected given the usual interpre-
tation.

23. This car is so much better than that one.
unsupported
unsupported
Remark: There is no exophoric context in the prototype

24. A man is standing over there.
unsupported
unsupported
Remark: There is no deictic context in the prototype

25. He is not the managing director. He is.
unsupported
unsupported
Remark: There is no exophoric context in the prototype

26. Every student admits that he is tired.
(every studentCN ! (admitVP (heNP ! isTiredVP)))
∀(𝑎 ∶ student). admit(tired(𝑎), 𝑎)

27. Every boy climbed on a tree. He is afraid to fall.
(every boyCN ! (climbedOnV2 ? (aDet treeCN))) ### (heNP ! isAfraid)
(∀(𝑎 ∶ boy). ∃(𝑏 ∶ tree). climbed_on(𝑎, 𝑏)) ∧ afraid_to_fall(𝑎)
∀(𝑎 ∶ boy). (∃(𝑏 ∶ tree). climbed_on(𝑎, 𝑏)) ∧ afraid_to_fall(𝑎)

28. Every boy climbed on Mary’s shoulders. He likes her.
(every boyCN ! (climbedOnV2 ? (maryNP ‵poss‵ shouldersCN2))) ### (heNP ! (likeVP ? herNP))
(∀(𝑎 ∶ boy). climbed_on(𝑎, the(shoulders(mary)))) ∧ like(𝑎,mary)
∀(𝑎 ∶ boy). climbed_on(𝑎, the(shoulders(mary))) ∧ like(𝑎,mary)

29. Every boy climbed on a tree and was afraid to fall.
(every boyCN ! ((climbedOnV2 ? aDet treeCN) ‵andVP‵ isAfraid))
∀(𝑎 ∶ boy). (∃(𝑏 ∶ tree). climbed_on(𝑎, 𝑏)) ∧ afraid_to_fall(𝑎)

30. Bill is old. Every boy climbed on a tree. He is afraid to fall.
(billNP ! isOld) ### (every boyCN ! (climbedOnV2 ? (aDet treeCN))) ### (heNP ! isAfraid)
old(bill) ∧ (∀(𝑎 ∶ boy). ∃(𝑏 ∶ tree). climbed_on(𝑎, 𝑏)) ∧ afraid_to_fall(𝑎)
old(bill) ∧ (∀(𝑎 ∶ boy). (∃(𝑏 ∶ tree). climbed_on(𝑎, 𝑏)) ∧ afraid_to_fall(𝑎))

31. Every boy climbed on a tree. It fell.
(every boyCN ! (climbedOnV2 ? (aDet treeCN))) ### (itNP ! fellVP)
(∀(𝑎 ∶ boy). ∃(𝑏 ∶ tree). climbed_on(𝑎, 𝑏)) ∧ fell(𝑏)
∃(𝑏 ∶ tree). (∀(𝑎 ∶ boy). climbed_on(𝑎, 𝑏)) ∧ fell(𝑏)
Remark: Scope extension can forces the order of quantifiers.
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32. Every commitee has a chairman. He is appointed by its members.
every commitee ! (has ? (aDet chairman)) ### (heNP ! (isAppointedBy ? (its members)))
(∀(𝑎 ∶ commitee). ∃(𝑏 ∶ chairman). have(𝑎, 𝑏)) ∧ appoint(the(members(𝑎)), 𝑏)
∀(𝑎 ∶ commitee). ∃(𝑏 ∶ chairman). have(𝑎, 𝑏) ∧ appoint(the(members(𝑎)), 𝑏)

33. A boy climbed on a tree. He is afraid to fall.
(aDet boyCN ! (climbedOnV2 ? (aDet treeCN))) ### (heNP ! isAfraid)
(∃(𝑎 ∶ boy). (∃(𝑏 ∶ tree). climbed_on(𝑎, 𝑏))) ∧ afraid_to_fall(𝑎)
∃(𝑎 ∶ boy). (∃(𝑏 ∶ tree). climbed_on(𝑎, 𝑏)) ∧ afraid_to_fall(𝑎)

34. If a man is tired, he leaves.
(((aDet man) ! isTiredVP) ==> (heNP ! leavesVP))
(∃(𝑎 ∶ man). tired(𝑎)) → leaves(𝑎)
∀(𝑎 ∶ man). tired(𝑎) → leaves(𝑎)

35. A man leaves if is he tired.
(((aDet man) ! leavesVP) <== (heNP ! isTiredVP))
tired(𝑎) → (∃(𝑎 ∶ man). leaves(𝑎))
∃(𝑎 ∶ man). tired(𝑎) → leaves(𝑎)
Remark: Scope extension does not dualize the quantifier when lifting from positive position.

36. Every man that owns a donkey beats it.
(every (man ‵that‵ (own ? (aDet donkey))) ! (beatV2 ? itNP))
∀(𝑎 ∶ [𝑏 ∶ man; 𝑐 ∶ donkey; 𝑝 ∶ own(𝑏, 𝑐)]). beat(𝑎, 𝑎.𝑐)

37. Most boys climbed on a tree.
(most boysCN ! (climbedOnV2 ? (aDet treeCN)))
(𝑀𝑂𝑆𝑇(𝑎 ∶ boy). ∃(𝑐 ∶ tree). climbed_on(𝑎, 𝑐)) ∧ (∀(𝑏 ∶ [𝑎 ∶ boy; 𝑐 ∶ tree; 𝑝 ∶ climbed_on(𝑎, 𝑐)]). true)

38. Most boys climbed on a tree. They were afraid to fall.
(most boysCN ! (climbedOnV2 ? (aDet treeCN))) ### (theyPlNP ! isAfraid)
(𝑀𝑂𝑆𝑇(𝑎 ∶ boy). ∃(𝑐 ∶ tree). climbed_on(𝑎, 𝑐)) ∧ (∀(𝑏 ∶ [𝑎 ∶ boy; 𝑐 ∶ tree; 𝑝 ∶ climbed_on(𝑎, 𝑐)]). true) ∧
afraid_to_fall(𝑏.𝑎)
(𝑀𝑂𝑆𝑇(𝑎 ∶ boy). ∃(𝑐 ∶ tree). climbed_on(𝑎, 𝑐)) ∧ (∀(𝑏 ∶ [𝑎 ∶ boy; 𝑐 ∶ tree; 𝑝 ∶ climbed_on(𝑎, 𝑐)]). true ∧
afraid_to_fall(𝑏.𝑎))

39. Most boys climbed on a tree. Every boy that climbed on a tree was afraid to fall.
(most boysCN!(climbedOnV2?(aDet treeCN)))###(every (boyCN‵that‵(climbedOnV2?(aDet treeCN)))!
isAfraid)
(𝑀𝑂𝑆𝑇(𝑎 ∶ boy). ∃(𝑐 ∶ tree). climbed_on(𝑎, 𝑐)) ∧ (∀(𝑏 ∶ [𝑎 ∶ boy; 𝑐 ∶ tree; 𝑝 ∶ climbed_on(𝑎, 𝑐)]). true) ∧
(∀(𝑑 ∶ [𝑒 ∶ boy; 𝑓 ∶ tree; 𝑝 ∶ climbed_on(𝑒, 𝑓)]). afraid_to_fall(𝑑))

40. Most boys climbed on a tree and were afraid to fall.
(most boysCN ! ((climbedOnV2 ? (aDet treeCN)) ‵andVP‵ isAfraid))
(𝑀𝑂𝑆𝑇(𝑎 ∶ boy). (∃(𝑐 ∶ tree). climbed_on(𝑎, 𝑐)) ∧ afraid_to_fall(𝑎)) ∧ (∀(𝑏 ∶ [𝑎 ∶ boy; 𝑝 ∶ (∃(𝑐 ∶
tree). climbed_on(𝑎, 𝑐)) ∧ afraid_to_fall(𝑎)]). true)

41. Mary owns a few donkeys. Bill beats them.
maryNP ! (own ? (few donkeys)) ### (billNP ! (beatV2 ? theyPlNP))
(𝐹𝐸𝑊(𝑎 ∶ donkeys). own(mary, 𝑎)) ∧ (∀(𝑏 ∶ [𝑎 ∶ donkeys; 𝑝 ∶ own(mary, 𝑎)]). true) ∧ beat(bill, 𝑏.𝑎)
(𝐹𝐸𝑊(𝑎 ∶ donkeys). own(mary, 𝑎)) ∧ (∀(𝑏 ∶ [𝑎 ∶ donkeys; 𝑝 ∶ own(mary, 𝑎)]). true ∧ beat(bill, 𝑏.𝑎))

42. John does not have a car. # It is fast.
negation (johnNP ! (has ? aDet carCN)) ### (itNP ! isFastVP)
¬(∃(𝑎 ∶ car). have(john, 𝑎)) ∧ fast(𝑎)
∀(𝑎 ∶ car). ¬have(john, 𝑎) ∧ fast(𝑎)
Remark: The sentence is infelicitous, but our algorithm produces a (dubious) interpretation anyway

43. A wolf might enter. It would growl.
(aDet wolf ! (might enterVP)) ### (itNP ! would growlVP)
(∃(𝑎 ∶ wolf). enter(𝑎)) ∧ growl(𝑎)
∃(𝑎 ∶ wolf). enter(𝑎) ∧ growl(𝑎)
Remark: Modals not supported

44. A wolf might enter. # It will growl.
(aDet wolf ! (might enterVP)) ### (itNP ! will growlVP)
(∃(𝑎 ∶ wolf). enter(𝑎)) ∧ growl(𝑎)
∃(𝑎 ∶ wolf). enter(𝑎) ∧ growl(𝑎)
Remark: Modals not supported
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45. Either there is no bathroom here or it is hidden.
negation (thereIs bathroomCN) ‵orS‵ (itNP ! isHiddenVP)
¬(∃(𝑎 ∶ bathroom). here(𝑎)) ∨ hidden(𝑎)
∀(𝑎 ∶ bathroom). ¬here(𝑎) ∨ hidden(𝑎)

46. He was tired. Bill left.
(heNP ! isTiredVP) ### (billNP ! leavesVP)
tired(bill) ∧ leaves(bill)

47. If bill finds it, he will wear his coat.
(billNP ! (findV2 ? itNP)) ==> (heNP ! (wearV2 ? his coatCN2))
find(bill, the(coat(bill))) → wear(bill, the(coat(bill)))

48. The pilot who shot at it hit the Mig that chased him.
epsilon (pilot ‵that‵ (shotAtV2 ? itNP)) ! (hitV2 ? (epsilon (mig ‵that‵ (chasedV2 ? himNP′))))
𝑇ℎ𝑒(𝑎 ∶ [𝑏 ∶ pilot; 𝑝 ∶ shotat(𝑏, 𝑐)]). (𝑇ℎ𝑒(𝑐 ∶ [𝑑 ∶ mig; 𝑝 ∶ chased(𝑑, 𝑎)]). hit(𝑎, 𝑐))

49. The pilot who shot at it hit a Mig that chased him.
epsilon (pilot ‵that‵ (shotAtV2 ? itNP)) ! (hitV2 ? (aDet (mig ‵that‵ (chasedV2 ? himNP′))))
𝑇ℎ𝑒(𝑎 ∶ [𝑏 ∶ pilot; 𝑝 ∶ shotat(𝑏, 𝑐)]). ∃(𝑐 ∶ [𝑑 ∶ mig; 𝑝 ∶ chased(𝑑, 𝑎)]). hit(𝑎, 𝑐)
∃(𝑐 ∶ [𝑑 ∶ mig; 𝑝 ∶ chased(𝑑, 𝑎)]). (𝑇ℎ𝑒(𝑎 ∶ [𝑏 ∶ pilot; 𝑝 ∶ shotat(𝑏, 𝑐)]). hit(𝑎, 𝑐))

50. The pilot shot a Mig that chased him and hit it.
(the pilot) ! ((shotAtV2 ? (aDet (mig ‵that‵ (chasedV2 ? himNP′)))) ‵andVP‵ (hitV2 ? itNP))
(∃(𝑎 ∶ [𝑏 ∶ mig; 𝑝 ∶ chased(𝑏,U(pilot))]). shotat(U(pilot), 𝑎)) ∧ hit(U(pilot), 𝑎)
∃(𝑎 ∶ [𝑏 ∶ mig; 𝑝 ∶ chased(𝑏,U(pilot))]). shotat(U(pilot), 𝑎) ∧ hit(U(pilot), 𝑎)

51. Everyone admits that they are tired. Mary does too
((everyone ! (admitVP (theySingNP ! isTiredVP))) ### (maryNP ! doesTooVP))
(∀(𝑎 ∶ person). admit(tired(𝑎), 𝑎)) ∧ admit(tired(mary),mary)

52. A lawyer signed every report. So did an auditor.
(aDet lawyerCN ! (signV2 ? (every reportCN))) ### (aDet auditorCN ! doesTooVP)
(∃(𝑎 ∶ lawyer). (∀(𝑏 ∶ report). sign(𝑎, 𝑏))) ∧ (∃(𝑐 ∶ auditor). (∀(𝑑 ∶ report). sign(𝑐, 𝑑)))

53. John loves his spouse. Mary does too.
johnNP ! (lovesVP′ ? his marriedCN2) ### (maryNP ! doesTooVP)
love(john, the(married(john))) ∧ love(mary, the(married(mary)))

54. Few congressmen love bill. They are tired.
(few congressmen ! (lovesVP billNP)) ### (theyPlNP ! isTiredVP)
(𝐹𝐸𝑊(𝑎 ∶ congressmen). love(bill, 𝑎)) ∧ (∀(𝑏 ∶ [𝑎 ∶ congressmen; 𝑝 ∶ love(bill, 𝑎)]). true) ∧ tired(𝑏.𝑎)
(𝐹𝐸𝑊(𝑎 ∶ congressmen). love(bill, 𝑎)) ∧ (∀(𝑏 ∶ [𝑎 ∶ congressmen; 𝑝 ∶ love(bill, 𝑎)]). true ∧ tired(𝑏.𝑎))

55. Few congressmen love bill. He is tired.
((few congressmen ! (lovesVP billNP)) ### (heNP ! isTiredVP))
(𝐹𝐸𝑊(𝑎 ∶ congressmen). love(bill, 𝑎)) ∧ (∀(𝑏 ∶ [𝑎 ∶ congressmen; 𝑝 ∶ love(bill, 𝑎)]). true) ∧ tired(bill)
Remark: The e-type pronoun is plural.

56. John is tired. Bill loves him.
(johnNP ! isTiredVP) ### (billNP ! (lovesVP himNP))
tired(john) ∧ love(john,bill)
Remark: (Bill loves John, not himself.)

57. John is tired. Bill loves himself.
(johnNP ! isTiredVP) ### (billNP ! (lovesVP himSelfNP))
tired(john) ∧ love(bill,bill)

58. Few men that love their wife beat them.
(few (men ‵that‵ (lovesVP (their wifeCN2)))) ! (beatV2 ? themSingNP)
(𝐹𝐸𝑊(𝑎 ∶ [𝑐 ∶ man; 𝑝 ∶ love(the(wife(𝑐)), 𝑐)]). beat(𝑎, the(wife(𝑎))))∧(∀(𝑏 ∶ [𝑎 ∶ Σ(𝑐 ∶ man). love(the(wife(𝑎.𝑐)), 𝑎.𝑐); 𝑝 ∶
beat(𝑎, the(wife(𝑎)))]). true)
Remark: Donkey pronoun

59. A donkey is tired. It leaves.
(((aDet donkey) ! isTiredVP) ### (itNP ! leavesVP))
(∃(𝑎 ∶ donkey). tired(𝑎)) ∧ leaves(𝑎)
∃(𝑎 ∶ donkey). tired(𝑎) ∧ leaves(𝑎)
Remark: Existentially-bound referrent
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60. If a man beats a donkey, it is tired.
(aDet man ! (beatV2 ? (aDet donkey))) ==> (itNP ! isTiredVP)
(∃(𝑎 ∶ man). (∃(𝑏 ∶ donkey). beat(𝑎, 𝑏))) → tired(𝑏)
∀(𝑏 ∶ donkey). (∃(𝑎 ∶ man). beat(𝑎, 𝑏)) → tired(𝑏)
Remark: Change of polarity when doing scope extension under implication

61. Bill owns a donkey. He beats it.
((billNP ! (own ? (aDet donkey))) ### (heNP ! (beatV2 ? itNP)))
(∃(𝑎 ∶ donkey). own(bill, 𝑎)) ∧ beat(bill, 𝑎)
∃(𝑎 ∶ donkey). own(bill, 𝑎) ∧ beat(bill, 𝑎)

62. A man that owns a donkey beats it.
(aDet (man ‵that‵ (own ? (aDet donkey))) ! (beatV2 ? itNP))
∃(𝑎 ∶ [𝑏 ∶ man; 𝑐 ∶ donkey; 𝑝 ∶ own(𝑏, 𝑐)]). beat(𝑎, 𝑎.𝑐)

63. If a man owns a donkey, he beats it.
(aDet man ! (own ? (aDet donkey))) ==> (heNP ! (beatV2 ? itNP))
(∃(𝑎 ∶ man). (∃(𝑏 ∶ donkey). own(𝑎, 𝑏))) → beat(𝑎, 𝑏)
∀(𝑎 ∶ man). (∀(𝑏 ∶ donkey). own(𝑎, 𝑏) → beat(𝑎, 𝑏))

64. every man beats every donkey that he owns.
every man ! (beatV2 ? (every (donkey ‵that‵ (heNP ¿ own))))
∀(𝑎 ∶ man). (∀(𝑏 ∶ [𝑐 ∶ donkey; 𝑝 ∶ own(𝑎, 𝑐)]). beat(𝑎, 𝑏))

65. John leaves. He is tired.
(johnNP ! leavesVP) ### (heNP ! isTiredVP)
leaves(john) ∧ tired(john)

66. Bill owns a donkey. John owns one too.
billNP ! (own ? (aDet donkey)) ### (johnNP ! (own ? oneToo))
(∃(𝑎 ∶ donkey). own(bill, 𝑎)) ∧ (∃(𝑏 ∶ donkey). own(john, 𝑏))
Remark: One-anaphora

67. John leaves. Mary does too.
((johnNP ! leavesVP) ### (maryNP ! doesTooVP))
leaves(john) ∧ leaves(mary)

68. John loves his wife. Bill does too.
(johnNP ! (lovesVP (his wifeCN2)) ### (billNP ! doesTooVP))
love(the(wife(john)), john) ∧ love(the(wife(john)),bill)
Remark: Strict reading

69. If she loves him, Mary beats her husband.
(sheNP ! lovesVP himNP) ==> (maryNP ! (beatV2 ? herHusbandNP))
love(the(married(mary)),mary) → beat(mary, the(married(mary)))
Remark: TODO: improve PC

70. Every woman that loves their husband beat him.
every (woman ‵that‵ (lovesVP′ ? herHusbandNP)) ! (beatV2 ? himNP)
∀(𝑎 ∶ [𝑏 ∶ woman; 𝑝 ∶ love(𝑏, the(married(𝑏)))]). beat(𝑎, the(married(𝑎)))
Remark: TODO: improve PC
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