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A Pre�y But Not Greedy Printer (Functional Pearl)
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�eory of Science

�is paper proposes a new speci�cation of pre�y printing which is stronger than the state of the art: we

require the output to be the shortest possible, and we also o�er the ability to align sub-documents at will. We

argue that our speci�cation precludes a greedy implementation. Yet, we provide an implementation which

behaves linearly in the size of the output. �e derivation of the implementation demonstrates functional

programming methodology.
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1 INTRODUCTION
A pre�y printer is a program that prints data structures in a way which makes them pleasant to

read. (�e data structures in question o�en represent programs, but not always.) Pre�y printing

has historically been used by members of the functional programming community to showcase

good style. Proeminent examples include the pre�y printer of Hughes [1995], which remains

an in�uential example of functional programming design, and that of Wadler [2003] which was

published as a chapter in a book dedicated to the “fun of programming”.

In addition to their aesthetic and pedagogical value, the pre�y printers of Hughes and Wadler

are practical implementations. Indeed, they form the basis of industrial-strength pre�y-printing

packages which remain popular today. Hughes’ design has been re�ned by Peyton Jones, and is

available as the Hackage package pre�y1, while Wadler’s design has been extended by Leijen and

made available as the wl-print package2. An ocaml implementation
3
of Wadler’s design also exists.

While this paper draws much inspiration from the aforementioned landmark pieces of work in

the functional programming landscape, my goal is slightly di�erent to that of Hughes and Wadler.

Indeed, they aim �rst and foremost to demonstrate general principles of functional programming

development, with an emphasis on the e�ciency of the algorithm. �eir methodological approach

is to derive a greedy algorithm from a functional speci�cation. In the process, they give themselves

some leeway as to what they accept as pre�y outputs (see Sec. 3.1). In contrast, my primary goal is

1
h�ps://hackage.haskell.org/package/pre�y

2
h�ps://hackage.haskell.org/package/wl-pprint
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to produce the pre�iest output, at the cost of e�ciency. Yet, the �nal result is reasonably e�cient

(Sec. 7).

Let us specify the desired behavior of a pre�y printer, �rst informally, as the following principles:

Principle 1. Visibility A pre�y printer shall layout all its output within the width of the page.

Principle 2. Legibility A pre�y printer shall make appropriate use of layout, to make it easy for
a human to recognize the hierarchical organization of data.

Principle 3. Frugality A pre�y printer shall minimize the number of lines used to display the
data.

Furthermore, the �rst principle takes precedence over the second one, which itself takes prece-

dence over the third one. In the rest of the paper, we interpret the above three principles as

an optimization problem, and derive a program which solves it e�ciently enough for practical

purposes.

Before diving into the details, let us pose a couple of methodological points. First, Haskell is

used throughout this paper in its quality of lingua franca of functional programming pearls —

yet, we make no essential use of laziness. Second, the source code for the paper and benchmarks,

as well as a fully �edged pre�y printing library based on its principles is available online: h�ps:

//github.com/jyp/pre�iest. A Haskell library based on the algorithm developed here is available as

well
4
.

2 INTERFACE (SYNTAX)
Let us use an example to guide the development of our pre�y-printing interface. Assume that we

want to pre�y print S-Expressions, which can either be atom or a list of S-Expressions. �ey can

be represented in Haskell as follows:

data SExpr = SExpr [SExpr] | Atom String
deriving Show

Using the above representation, the S-Expr (a b c d) has the following encoding:

abcd :: SExpr
abcd = SExpr [Atom "a", Atom "b", Atom "c", Atom "d"]

�e goal of the pre�y printer is to render a given S-Expr according to the three principles of pre�y

printing: Visibility, Legibility and Frugality. While it is clear how the �rst two principles

constrain the result, it is less clear how the third principle plays out: we must specify more precisely

which layouts are admissible. To this end, we assert that in a pre�y display of an S-Expr, the

elements should be either concatenated horizontally, or aligned vertically. (Even though there are

other possible choices, ours is su�cient for illustrative purposes.) For example, the legible layouts

of the abcd S-Expression de�ned above would be either

(a b c d)

or

(a
b
c
d)

4
h�ps://hackage.haskell.org/package/pre�y-compact
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And thus, legibility will interact in non-trivial ways with Frugality and Legibility.

In general, a pre�y printing library must provide the means to express the set of legible layouts:

it is up to the user to instantiate Legibility on the data structure of interest. �e printer will then

automatically pick the smallest (Frugality) legible layout which �ts the page (Visibility).

Our layout-description API is similar to Hughes’: we can contatenate documents either vertically

($$) or horizontally (<>), as well as embed raw text and chose between layouts (<|>) — but we lack

a dedicated �exible space insertion operator (<+>). We give a formal de�nition of those operators

in Sec. 4, but at this stage we keep the implementation of documents abstract. We do so by using a

typeclass (Doc) which provides the above combinators, as well as means of rendering a document:

text :: Doc d ⇒ String → d
(<>) :: Doc d ⇒ d → d → d
($$) :: Doc d ⇒ d → d → d
(<|>) :: Doc d ⇒ d → d → d
render :: Doc d ⇒ d → String

We can then de�ne a few useful combinators on top of the above: the empty document; horizontal

concatenation with a �xed intermediate space (<+>); vertical and horizontal concatenation of

multiple documents.

empty :: Layout d ⇒ d
empty = text ""
(<+>) :: Layout d ⇒ d → d → d
x <+> y = x <> text " " <> y
hsep, vcat :: Doc d ⇒ [d] → d
vcat = foldDoc ($$)

hsep = foldDoc (<+>)

foldDoc :: Doc d ⇒ (d → d → d) → [d] → d
foldDoc [] = empty
foldDoc [x] = x
foldDoc f (x : xs) = f x (foldDoc f xs)

We can furthermore de�ne the choice between horizontal and vertical concatenation:

sep :: Doc d ⇒ [d] → d
sep [] = empty
sep xs = hsep xs <|> vcat xs

Turning S-expressions into a Doc is then straightforward:

pre�y :: Doc d ⇒ SExpr → d
pre�y (Atom s) = text s
pre�y (SExpr xs) = text "(" <>

(sep $ map pre�y xs) <>
text ")"

3 SEMANTICS (INFORMALLY)
�e above API provides a syntax to describe layouts. �e next natural question is then: what should

its semantics be? In other words, how do we turn the three principles into a formal speci�cation?

In particular, how do we turn the above pre�y function into a pre�y printer of S-Expressions?

PACM Progr. Lang., Vol. 1, No. 1, Article 6. Publication date: September 2017.
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12345678901234567890123456789012345678901234567890123456789012345678901234567890

((abcde ((a b c d) (a b c d) (a b c d) (a b c d)))
(abcdefgh ((a b c d) (a b c d) (a b c d) (a b c d))))

Fig. 1. The expression testData pre�y-printed on 80 columns.

Let us use an example to pose the question in concrete terms, and outline why neither Wadler’s

nor Hughes’ answer is satisfactory for our purposes. Suppose that we want to pre�y-print the

following S-Expr (which is specially cra�ed to demonstrate general shortcomings of both Hughes

and Wadler libraries):

testData :: SExpr
testData = SExpr [SExpr [Atom "abcde", abcd4],

SExpr [Atom "abcdefgh", abcd4]]
where abcd4 = SExpr [abcd, abcd, abcd, abcd]

Remember that by assumptionwewould like elements inside an S-Expr to be either aligned vertically

or concatenated horizontally (for Legibility), and that the second option should be preferred over

the �rst (for Frugality), as long as the text �ts within the page width (for Visibility). More

precisely, the three principles demand the output with the smallest number of lines which still �ts

on the page among all the legible outputs described above. �us on a 80-column-wide page, they

demand the output displayed in Fig. 1 and on a 20-column-wide page, they demand the following

output (the �rst line is not part of the output, but it helps by showing column numbers):

12345678901234567890

((abcde ((a b c d)
(a b c d)
(a b c d)
(a b c d)))

(abcdefgh
((a b c d)
(a b c d)
(a b c d)
(a b c d))))

Yet, neither Hughes’ nor Wadler’s library can deliver those results.

3.1 The limitations of Hughes and Wadler
Let us take a moment to see why. On a 20-column page and using Hughes’ library, we would get

the output shown in Fig. 2 instead. �at output uses much more space than necessary, violating

Frugality. Why is that? Hughes states that “it would be unreasonably ine�cient for a pre�y-

printer to decide whether or not to split the �rst line of a document on the basis of the content

of the last.” (sec. 7.4 of his paper). �erefore, he chooses a greedy algorithm, which processes the

input line by line, trying to �t as much text as possible on the current line, without regard for what

comes next. In our example, the algorithm can �t (abcdefgh ((a on the sixth line, but then it has

commi�ed to a very deep indentation level, which forces to display the remainder of the document

in a narrow area, wasting vertical space. Such a waste occurs in many real examples: any optimistic

��ing on an early line may waste tremendous amount of space later on.

PACM Progr. Lang., Vol. 1, No. 1, Article 6. Publication date: September 2017.
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12345678901234567890

((abcde ((a b c d)
(a b c d)
(a b c d)
(a b c d)))

(abcdefgh ((a
b
c
d)
(a
b
c
d)
(a
b
c
d)
(a
b
c
d))))

Fig. 2. The expression testData pre�y-printed using Hughes’ library.

12345678901234567890

((abcde
((a b c d)
(a b c d)
(a b c d)
(a b c d)))

(abcdefgh
((a b c d)
(a b c d)
(a b c d)
(a b c d))))

Fig. 3. The expression testData pre�y-printed using Wadler’s library.

How does Wadler’s library fare on the example? Unfortunately, we cannot answer the question

in a strict sense. Indeed, Wadler’s API is too restrictive to even express the layout that we are a�er.
�at is, one can only specify a constant amount of indentation, not one that depends on the contents

of a document. In other words, Wadler’s library lacks the capability to express that a multi-line

sub-document b should be laid out to the right of a document a (even if a is single-line). Instead, b
must be put below a. Because of this restriction, even the best pre�y printer wri�en using Wadler’s

library can only produce the output shown in Fig. 3. �e result does not look too bad — but there is

PACM Progr. Lang., Vol. 1, No. 1, Article 6. Publication date: September 2017.
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a spurious line break a�er the atom abcde. While Wadler’s restriction may be acceptable to some, I

�nd it unsatisfying for two reasons. First, spurious line breaks may appear in many places, so the

rendering may be much longer than necessary, thereby violating Frugality. Second, and more

importantly, a document which is laid out a�er another cannot be properly indented in general.

Suppose that we would like to pre�y print a ML-style equation composed of a Pattern and the

following right-hand-side:

expression [listElement x,
listElement y,
listElement z,
listElement w]

�ite reasonably, we hope to obtain the following result, which puts the list to the right of

the expression, clearly showing that the list is an argument of expression, and thus properly

respecting Legibility:

Pattern = expression [listElement x,
listElement y,
listElement z,
listElement w]

However, using Wadler’s library, the indentation of the list can only be constant, so even with the

best layout speci�cation we would obtain instead the following output:

Pattern = expression
[listElement x,
listElement y,
listElement z,
listElement w]

Aligning the argument of the expression below and to the le� of the equal sign is bad, because

it needlessly obscures the structure of the program; Legibility is not respected. �e the lack of

a combinator for relative indentation is a serious drawback
5
. In fact, Leijen’s implementation

of Wadler’s design (wl-print), does feature an alignment combinator. However, as Hughes’ does,

Leijen’s uses a greedy algorithm, and thus su�ers from the same issue as Hughes’ library.

In summary, we have to make a choice between either respecting the three principles of pre�y

printing, or providing a greedy algorithm. Hughes does not fully respect Frugality. Wadler does

not fully respect Legibility. Here, I decide to respect both, but I give up on greediness. Yet, the

�nal algorithm that I arrive at is fast enough for common pre�y-printing tasks.

But let us not get carried away. Before a�acking the problem of making an implementation, we

need to �nish the formalization of the semantics. And before that, it is best if we spend a moment

to further re�ne the API for de�ning pre�y layouts.

4 SEMANTICS (FORMALLY)
4.1 Layouts
We ignore for a moment the choice between possible layouts (<|>). As Hughes does, we call a
document without choice a layout.

Recall that we have inherited from Hughes a dra� API for layouts:

5
�e work of Swierstra and Chitil [2009] su�ers from the same drawback.
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text :: Layout l ⇒ String → l
(<>) :: Layout l ⇒ l → l → l
($$) :: Layout l ⇒ l → l → l
At this stage, classic functional pearls would state a number of laws that the above API has

to satisfy, then infer a semantics from them. Fortunately, in our case, Hughes and Wadler have

already laid out this ground work, so we can take a shortcut and immediately state a compositional

semantics. We will later check that the expected laws hold.

Let us interpret a layout as a non-empty list of lines to print. As Hughes, I shall simply use the

type of lists, trusting the reader to remember the invariant of non-emptiness.

type L = [String]
Preparing a layout for printing is as easy as inserting a newline character between each string:

render :: L → String
render = intercalate "\n"

where intercalate can be de�ned as follows:

intercalate :: String → [String] → String
intercalate x [] = []

intercalate x (y : ys) = y ++ x ++ intercalate ys
Embedding a string is thus immediate:

text :: String → L
text s = [s]

�e interpretation of vertical concatenation ($$) requires barely more thought: it su�ces to con-

catenate the input lists.

($$) :: L → L → L
xs $$ ys = xs ++ ys

�e only potential di�culty is to �gure out the interpretation of horizontal concatenation (<>). We

follow the advice provided by Hughes [1995]: “translate the second operand [to the right], so that

its �rst character abuts against the last character of the �rst operand”. For example:

xxxxxxxxxxxxx yyyyyyyyyyyyyyyyyyyyy
xxxxxxxxx <> yyyyyyyyyyyyyyyyyyyyyyyyyyyyy
xxxxxxxxxxxx yyyy
xxxxxx

= xxxxxxxxxxxxx
xxxxxxxxx
xxxxxxxxxxxx
xxxxxxyyyyyyyyyyyyyyyyyyyyy

yyyyyyyyyyyyyyyyyyyyyyyyyyyyy
yyyy

Or, diagrammatically:

<> =

Algorithmically, one must handle the last line of the �rst layout and the �rst line of the second

layout specially, as follows:

PACM Progr. Lang., Vol. 1, No. 1, Article 6. Publication date: September 2017.
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(<>) :: L → L → L
xs <> (y : ys) = xs0 ++ [x ++ y] ++ map (indent ++) ys
where xs0 = init xs

x :: String
x = last xs
n = length x
indent = replicate n ’ ’

We take a quick detour to re�ne our API a bit. Indeed, as becomes clear with the above de�nition,

vertical concatenation is (nearly) a special case of horizontal composition. �at is, instead of

composing vertically, one can add an empty line to the le�-hand-side layout and then compose

horizontally. �e combinator which adds an empty line is called flush, and has the following

de�nition:

flush :: L → L
flush xs = xs ++ [""]

Vertical concatenation is then:

($$) :: L → L → L
a $$ b = flush a <> b

One might argue that replacing ($$) by flush does not make the API shorter nor simpler. Yet, we

stick this choice, for two reasons:

(1) �e new API clearly separates the concerns of concatenation and le�-�ushing documents.

(2) �e horizontal composition (<>) has a nicer algebraic structure than ($$). Indeed, the

vertical composition ($$) has no unit, while (<>) has the empty layout as unit. (In Hughes’

pre�y-printer, not even (<>) has a unit, due to more involved semantics.)

To sum up, our API for layouts is the following:

class Layout l where
(<>) :: l → l → l
text :: String → l
flush :: l → l
render :: l → String

Additionally, as mentioned above, layouts follow a number of algebraic laws, (wri�en here as

�ickCheck properties
6
):

(1) Layouts form a monoid, with operator (<>) and unit empty7:
propLe�Unit :: (Doc a, Eq a) ⇒ a → Bool
propLe�Unit a = empty <> a ≡ a

propRightUnit :: (Doc a, Eq a) ⇒ a → Bool
propRightUnit a = a <> empty ≡ a

propAssoc :: (Doc a, Eq a) ⇒ a → a → a → Bool
propAssoc a b c = (a <> b) <> c ≡ a <> (b <> c)

(2) text is a monoid homomorphism:

6
�ese properties can be (and were) checked when properly monomorphized using either of the concrete implementations

provided later. �e same checks were performed for all properties stated in the paper.

7
recall empty = text ""
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propTextAppend s t = text s <> text t ≡ text (s ++ t)
propTextEmpty = empty ≡ text ""

(3) flush can be pulled out of concatenation, in this way:

propFlush :: (Doc a, Eq a) ⇒ a → a → Bool
propFlush a b = flush a <> flush b ≡ flush (flush a <> b)

One might expect this law to hold instead:

flush a <> flush b ≡ flush (a <> b)
However, the inner flush on b goes back to the local indentation level, while the outer flush
goes back to the outer indentation level, which are equal only if a ends with an empty line.

In turn this condition is guaranteed only when a is itself �ushed on the right-hand side.

4.2 Choice
We proceed to extend the API with choice between layouts, yielding the �nal API to specify legible

documents. �e extended API is accessible via a new type class:

class Layout d ⇒ Doc d where
(<|>) :: d → d → d
fail :: d

Again, we give the compositional semantics straight away. Documents are interpreted as a set of

layouts. We implement sets as lists, and we will take care not to depend on the order and number

of occurrences.

�e interpretation of disjunction merely appends the list of possible layouts:

instance Doc [L] where
xs <|> ys = (xs ++ ys)
fail = []

Consequently, disjunction is associative.

propDisjAssoc :: (Doc a, Eq a) ⇒ a → a → a → Bool
propDisjAssoc a b c = (a <|> b) <|> c ≡ a <|> (b <|> c)

We simply li� the layout operators idiomatically [McBride and Paterson, 2007] over sets: elements

in sets are treated combinatorially.

instance Layout [L] where
text = pure . text
flush = fmap flush
xs <> ys = (<>) <$> xs <∗> ys

Consequently, concatenation and flush distribute over disjunction:

propDistrL :: (Doc a, Eq a) ⇒ a → Bool
propDistrL a = (a <|> b) <> c ≡ (a <> c) <|> (b <> c)
propDistrR :: (Doc a, Eq a) ⇒ a → Bool
propDistrR a = c <> (a <|> b) ≡ (c <> a) <|> (c <> b)
propDistrFlush :: (Doc a, Eq a) ⇒ a → a → Bool
propDistrFlush a b = flush (a <|> b) ≡ flush a <|> flush b

PACM Progr. Lang., Vol. 1, No. 1, Article 6. Publication date: September 2017.
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4.3 Semantics
We can �nally de�ne formally what it means to render a document. We wrote above that the

pre�iest layout is the solution of the optimization problem given by combining all three principles.

Namely, to pick a most frugal layout among the visible ones:

render = render .
mostFrugal .
filter visible

Note that the call to render in the above snippet invokes the implementation of the L instance. �e

rest of the above de�nition breaks down as follows. Visibility is formalized by the visible function,
which states that all lines must �t on the page:

visible :: L → Bool
visible xs = maximum (map length xs) ≤ pageWidth
pageWidth = 80

Frugality is formalized by the mostFrugal function, which picks a layout with the least number

of lines:

mostFrugal :: [L] → L
mostFrugal = minimumBy size
where size = compare ‘ on ‘ length

Legibility is realized by the applications-speci�c set of layouts, speci�ed by the API of Sec. 2,

which comes as an input to render.
One may expect that disjunction should also be commutative. However, the implementation of

mostFrugal only picks one of the most frugal layouts. �at is �ne, because all most frugal layouts

are equally good. However it also means that re-ordering the arguments of a disjunction may a�ect

the layout being picked. �erefore, commutativity of disjunction holds only up to the length of the

layout being rendered:

propDisjCommut :: Doc a ⇒ a → a → Bool
propDisjCommut a b = a <|> b � b <|> a
in�x 3 �

(�) :: Layout a ⇒ a → a → Bool
(�) = (≡) ‘ on ‘ (length . lines . render)

We have now de�ned semantics compositionally. Furthermore, this semantics is executable, and

thus we can implement the pre�y printing of an S-Expr as follows:

showSExpr x = render (pre�y x :: [L])

Running showSExpr on our example (testData) may eventually yield the output that we demanded

in Sec. 3. But one should not expect to see it any time soon. Indeed, while the above semantics

provides an executable implementation, it is impracticably slow. Indeed, every possible combination

of choices is �rst constructed, and only then a shortest output is picked. �us, for an input with n
choices, the running time is O (2n ).

5 A MORE EFFICIENT IMPLEMENTATION
�e next chunk of work is to transform the above, clearly correct but ine�cient implementation to

a functionally equivalent, but e�cient one. To do so we need two insights.

PACM Progr. Lang., Vol. 1, No. 1, Article 6. Publication date: September 2017.
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5.1 Measures
�e �rst insight is that it is not necessary to fully construct layouts to calculate their size: only

some of their parameters are relevant. Let us remember that we want to si� through layouts based

on the space that they take. Hence, from an algorithmic point of view, all that ma�ers is a measure

of that space. Let us de�ne an abstract semantics for layouts, which ignores the text, and captures

only the amount of space used.

�e only parameters that ma�er are the maximum width of the layout, the width of its last line

and its height (and, because layouts cannot be empty and it is convenient to start counting from

zero, we do not count the last line):

height

maxWidth

lastWidth

In code:

data M = M {height :: Int,
lastWidth :: Int,
maxWidth :: Int}

deriving (Show, Eq, Ord)

Astute readers may have guessed the above parameters by looking at the diagram for composi-

tion of layouts shown earlier. Indeed, it is the above abstract semantics (M) which justi�es the

abstract representation of a layout that the diagram uses (a box with an odd last line). Here is the

concatenation diagram annotated with those lengths:

<> =
la

mwa

lwa

lb

mwb

lwb

la + lb

max mwa (lwa + mwb )

lwa + lwb

�e above diagram can be read out as Haskell code:

instance Layout M where
a <> b =
M {maxWidth = max (maxWidth a)

(lastWidth a + maxWidth b),
height = height a + height b,
lastWidth = lastWidth a + lastWidth b}

�e other layout combinators are easy to implement:

text s = M {height = 0,

maxWidth = length s,
lastWidth = length s}

flush a = M {maxWidth = maxWidth a,

PACM Progr. Lang., Vol. 1, No. 1, Article 6. Publication date: September 2017.
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height = height a + 1,

lastWidth = 0}

We can even give a rendering for these abstract layouts by printing an x at each occupied position,

thereby completing the class instance:

render m = intercalate "\n"
(replicate (height m) (replicate (maxWidth m) ’x’) ++

[replicate (lastWidth m) ’x’])

�e correctness of the Layout M instance relies on intuition, and a proper reading of the concate-

nation diagram. �is process being informal, we must cross-check the �nal result formally. To do

so, we de�ne a function which computes the measure of a full layout:

measure :: L → M
measure xs = M {maxWidth = maximum $ map length $ xs,

height = length xs − 1,

lastWidth = length $ last $ xs}
�en, to check the correctness of the Layout M instance, we verify that measure is a layout

homomorphism (ignoring of course the renderer). �is homomorphism property can be spelled

out as the following three laws:

Lemma 5.1. Measure is a Layout-homomorphism
measure (a <> b) ≡ measure a <> measure b
measure (flush a) ≡ flush (measure a)
measure (text s) ≡ text s

(Note: on the le�-hand-side of the above equations, the combinators (<>, flush, text) come from the L
instance of Layout, while on the right-hand-side they come from the M instance.)

Proof. Checking the laws is a simple, if somewhat tedious exercise of program calculation, and

thus it is deferred to the appendix. �

Using the measure, we can check that a layout is fully visible simply by checking thatmaxWidth
is small enough:

valid :: M → Bool
valid x = maxWidth x ≤ pageWidth

Having properly re�ned the problem, and continuing to ignore the detail of actually rendering the

text, we may proceed to give a fast implementation of the pre�y printer.

5.2 Early filtering out invalid results
�e �rst optimization is to �lter out invalid results early; like so:

text x = filter valid [text x]
xs <> ys = filter valid [x <> y | x ← xs, y ← ys]

We can do so because de-construction preserves validity: the validity of a document implies the

validity of its part.

Lemma 5.2. de-construction preserves validity. �e following two implications hold:
valid (a <> b) ⇒ valid a ∧ valid b
valid (flush a) ⇒ valid a

Proof. We prove the two parts separately:
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(1) valid (a <> b)
⇒ maxWidth (a <> b) < pageWidth
⇒ max (maxWidth a) (lastWidth a + maxWidth b) ≤ pageWidth
⇒ maxWidth a < pageWidth ∧ lastWidth a + maxWidth b ≤ pageWidth
⇒ maxWidth a < pageWidth ∧ maxWidth b ≤ pageWidth
⇒ valid a ∧ valid b

(2) valid (flush a) ⇒ maxWidth (flush a) ≤ pageWidth
⇒ maxWidth a ≤ pageWidth
⇒ valid a

�

Consequently, keeping invalid layouts is useless: they can never be combined with another

layout to produce something valid.

Theorem 5.3. Invalid layouts cannot be �xed
not (valid a) ⇒ not (valid (a <> b))
not (valid b) ⇒ not (valid (a <> b))
not (valid a) ⇒ not (valid (flush a))

Proof. By contrapositive of Lem. 5.2 �

5.3 Pruning out dominated results
�e second optimization relies on the insight that even certain valid results are dominated by others.

�at is, they can be discarded early.

We write a ≺ b when a dominates b. We will arrange our domination relation such that

(1) Layout operators are monotonic with respect to domination. Consequently, for any docu-

ment context ctx :: Doc d ⇒ d → d,
if a ≺ b then ctx a ≺ ctx b

(2) If a ≺ b, then a is at least as frugal as b.
Together, these properties mean that we can always discard dominated layouts from a set, as we

could discard invalid ones. Indeed, we have:

Theorem 5.4. (Domination) For any context ctx, we have
a ≺ b⇒ height (ctx a) ≤ height (ctx b)

Proof. By composition of the properties 1. and 2. �

We can concretize the above abstract result by de�ning our domination relation and proving

its properties 1. and 2. Our domination relation is a partial order (a re�exive, transitive and

antisymmetric relation), and thus we can make it an instance of the following class:

class Poset a where
(≺) :: a → a → Bool

�e order that we use is the intersection of ordering in all dimensions: if layout a is shorter,

narrower, and has a narrower last line than layout b, then a dominates b.
instance Poset M where
m1 ≺ m2 = height m1 ≤ height m2 &&

maxWidth m1 ≤ maxWidth m2 &&

lastWidth m1 ≤ lastWidth m2
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�e second desired property is a direct consequence of the de�nition. �e �rst one is broken down

into the two following lemmas:

Lemma 5.5. flush is monotonic.
if

m1 ≺ m2

then

flush m1 ≺ flush m2

Proof. By de�nition, the assumption expands to

height m1 ≤ height m2

maxWidth m1 ≤ maxWidth m2

lastWidth m1 ≤ lastWidth m2

similarly, the conclusion that we aim to prove expands to the following three conditions

height (flush m1) ≤ height (flush m2)

maxWidth (flush m1) ≤ maxWidth (flush m2)

lastWidth (flush m1) ≤ lastWidth (flush m2)

by de�nition, they respectively reduce to the following inequalities, which are easy consequences

of the assumptions.

height m1 + 1 ≤ height m2 + 1

maxWidth m1 ≤ maxWidth m2

0 ≤ 0

�

Lemma 5.6. concatenation is monotonic

if m1 ≺ m2 and m′1 ≺ m′2 ⇒ (m1 <> m′1) ≺ (m2 <> m′2)

Proof. Each of the assumptions expand to three conditions. �us we have:

height m1 ≤ height m2

maxWidth m1 ≤ maxWidth m2

lastWidth m1 ≤ lastWidth m2

height m′1 ≤ height m′2
maxWidth m′1 ≤ maxWidth m′2
lastWidth m′1 ≤ lastWidth m′2

and similarly we need to prove the following three conditions to obtain the conclusion:

height (m1 <> m′1) ≤ height (m2 <> m′2)
maxWidth (m1 <> m′1) ≤ maxWidth (m2 <> m′2)
lastWidth (m1 <> m′1) ≤ lastWidth (m2 <> m′2)

�ese are respectively equivalent to the following ones, by de�nition:

height m1 + height m′1 ≤ height m2 + height m′2
max (maxWidth m1) (lastWidth m1 + maxWidth m′1)
≤ max (maxWidth m2) (lastWidth m2 + maxWidth m′2)

lastWidth m1 + lastWidth m′1 ≤ lastWidth m2 + lastWidth m′2
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�e�rst and third inequalities are consequences of the assumptions combinedwith themonotonicity

of +. �e second inequation can be obtained likewise, with additionally using the monotonicity of

max:

a ≤ b ∧ c ≤ d⇒ max a c ≤ max b d

�

5.4 Pareto frontier
We know by now that in any set of possible layouts, it is su�cent to consider the subset of non-

dominated layouts. �is subset is known as the Pareto frontier [Deb et al., 2016] and has the

following de�nition.

De�nition 5.7. Pareto frontier Pareto(X ) = {x ∈ X | ¬∃y ∈ X .x , y ∧ y ≺ x }

When sets are represented as lists without duplicates, the Pareto frontier can be computed as

follows.

pareto :: Poset a ⇒ [a]→ [a]
pareto = loop []

where loop acc [] = acc
loop acc (x : xs) = if any (≺ x) acc

then loop acc xs
else loop (x : filter (not . (x ≺)) acc) xs

�e above loop function examines elements sequentially, and keeps a Pareto frontier of the elements

seen so far in the acc parameter. For each examined element x, if it is dominated, then we merely

skip it. Otherwise, x is added to the current frontier, and all the elements dominated by x are then
removed.

�e implementation of the pre�y-printing combinators then becomes:

type DM = [M]

instance Layout DM where
xs <> ys = pareto (concat [filter valid [x <> y | y ← ys] | x ← xs])
flush xs = pareto (map flush xs)
text s = filter valid [text s]
render = render . minimum

instance Doc DM where
fail = []

xs <|> ys = pareto (xs ++ ys)

�e above is the �nal, optimized version of the layout-computation algorithm.

6 ADDITIONAL FEATURES
To obtain a complete library from the above design, one should pay a�ention to a few more points

that we discuss in this section.

6.1 Re-pairing with text
Eventually, one might be interested in ge�ing a complete pre�y printed output, not just the amount

of space that it takes. To do so we can pair measures with full-text layouts, while keeping the

measure of space for actual computations:
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instance Poset (M, L) where
(a, ) ≺ (b, ) = a ≺ b

instance Layout (M, L) where
(x, x′) <> (y, y′) = (x <> y, x′ <> y′)
flush (x, x′) = (flush x, flush x′)
text s = (text s, text s)
render = render . snd

instance Layout [(M, L)] where
xs <> ys = pareto $ concat [filter (valid . fst) [x <> y | y ← ys] | x ← xs]
flush xs = pareto $ (map flush xs)
text s = filter (valid . fst) [text s]
render = render . minimumBy (compare ‘ on ‘ fst)

instance Doc [(M, L)] where
fail = []

xs <|> ys = pareto (xs ++ ys)

6.2 Hughes-Style nesting
Hughes proposes a nest combinator, which indents its argument unless it appears on the right-

hand-side of a horizontal concatenation. �e above semantics are rather involved, and appear

di�cult to support by a local modi�cation of the framework developed in this paper.

Fortunately, in practice nest is used only to implement the hang combinator, which o�ers the

choice between horizontal concatenation and vertical concatenation with an indentation:

hang :: Doc d ⇒ Int → d → d → d
hang n x y = (x <> y) <|> (x $$ nest n y)

In this context, nesting occurs on the right-hand-side of vertical concatenation, and thus its

semantics can be simpli�ed. In fact, in the context of hang, it can be implemented easily in terms

of the combinators provided so far:

nest :: Layout d ⇒ Int → d → d
nest n y = spaces n <> y
where spaces n = text (replicate n ’ ’)

6.3 Ribbon length
Another subtle feature of Hughes’ library is the ability to limit the amount of text on a single line,

ignoring the current indentation. �e goal is to avoid long lines mixed with short lines. While such

a feature is easily added to Hughes or Wadler’s greedy pre�y printer, it is harder to support as such

on top of the basis we have so far.

What we would need to do is to record the length of the �rst line and length of the last line

without indentation. When concatenating, we add those numbers and check that they do not

surpass the ribbon length. Unfortunately this method adds two dimensions to the search space,

and slows the �nal algorithm to impractical speeds.

An alternative approach to avoid too long lines is to interpret the ribbon length as the maximum

size of a self-contained sublayout ��ing on a single line. �is interpretation can be implemented

e�ciently, by �ltering out intermediate results that do not �t the ribbon. �is can be done be

re-de�ning valid as follows:
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Fig. 4. Layout times for full trees.

fitRibbon m = height m > 0 | | maxWidth m < ribbonLength
valid′ m = valid m && fitRibbon m

�is re-interpretation appears to ful�ll the original goal as well.

7 PERFORMANCE TESTS
Having optimized our algorithm as best we could, we turn to empirical test to evaluate its per-

formance. Our benchmarking tool is O’Sullivan’s criterion benchmarking library, which provides

precise timings even for operations lasting less than a microsecond. All benchmarks ran on a single

core of an Intel Xeon E5-2640 v4, using GHC 8.0.

7.1 Behaviour at scale
In order to benchmark our pre�y printer on large outputs, we have used it to lay out full binary

trees and random trees, represented as S-Expressions. �e set of layouts were computed using

the pre�y printer for S-Expressions shown above. �e most e�cient version of the pre�y-printer

(shown at the end of Sec. 5) was used. �en we then measured the time to compute the length of

the best layout. Indeed, computing the length is enough to force the computation of the best layout.

�e results are displayed in plots which uses a double logarithmic scale and show the time taken

against the number of lines of output. By using the number of lines (rather than, say, the depth of

the tree), we have a more reasonable measure of the amount of work to perform for each layout

task.

Full trees. S-expressions representing full binary trees of increasing depth were generated by the

following function:

testExpr 0 = Atom "a"

testExpr n = SExpr [testExpr (n − 1), testExpr (n − 1)]

Pre�y-printing the generated S-expression heavily exercises the disjunction construct. Indeed,

for each S-Expressions with two sub-expressions, the printer introduces a choice, therefore the

number of choices is equal to the number of nodes in a binary tree of depth n. �us, for testExpr n
the pre�y printer is o�ered 2

n − 1 choices, for a total of 22
n−1

possible layouts to consider.

We have run the layout algorithm for n ranging from 1 to 16, and obtained the results shown in

Fig. 4.
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Fig. 5. Layout times for random trees.

While criterion provides con�dence intervals, they are so thin that they are not visible at the scale

of the plots, thus we have not a�empted to render them. We observe that inputs for n∈ [0, 1, 2, 3]
can all be printed on a single line, and thus these data points should be dismissed.

Otherwise, the plot shows a behavior that tends to become linear when the output is large

enough.

For such large inputs approximately 1444.27 lines are laid out per second. (Data points exhibiting

this speed lay on the straight line which we overlaid to the plot.)

We interpret this result as follows. Our pre�y-printer essentially considers non-dominated

layouts. If the input is su�ciently complex, this means to consider approximately one layout per

possible width (80 in our tests) — when the width is given then the length and the width of last line

are �xed. �erefore, for su�ciently large outputs the amount of work becomes independent of the

number of disjunctions present in the input, and depends only on the amount of text to render.

Random trees. One may wonder if the e�ect that we observe is not speci�c to full trees. To

control this hypothesis we ran the same experiment on 100 random S-expressions of exponentially

increasing length. �ese S-expressions were generated by picking random Dyck words of a

certain length (using the randomDyck function shown below) and then interleaving the obtained

parentheses with atoms.

randomDyck maxLen = go 0 0 where
go opened closed
| closed ≥ maxLen = return []

| opened ≥ maxLen = close
| closed ≥ opened = open
| otherwise = do
b ← randomIO
if b then open else close

where open = (Open :) <$> go (1 + opened) closed
close = (Close :) <$> go opened (1 + closed)

We obtained the results shown in Fig. 5. �e results corroborate those obtained for full trees: the

observed running time is proportional to the length of the output. Furthermore the layout speed

PACM Progr. Lang., Vol. 1, No. 1, Article 6. Publication date: September 2017.



A Pre�y But Not Greedy Printer (Functional Pearl) 6:19

Table 1. Pre�y-printing times (in milliseconds) for typical data, using various libraries

Input Ours Wadler-Leijen Hughes-PJ

JSON 1k 9.7 1.5 3.0

JSON 10k 145.5 14.8 30.0

XML 1k 20.0 3.2 11.9

XML 10k 245.0 36.1 192.0

for random trees is roughly 10 times that of full trees; the straight line corresponding to this speed

is shown for reference on the plot.

One may wonder how the elimination of dominated outputs impacts the performance. In fact, in

this con�guration the algorithm has an exponential behavior, and thus our test machine ran out of

memory even for relatively simple outputs. �us we could not produce more than four useful data

points, and thus omi�ed the corresponding plot.

7.2 Tests for full outputs and typical inputs
Even though the asymptotic behavior of the optimized algorithm is linear, one may wonder if its

absolute performance is satisfactory for typical pre�y-printing tasks. �us we evaluated a complete

pre�y-printing task, including not only the selection of the layout but its actual printing. We did so

using our complete library
8
. For reference, we performed the same tests using the Wadler-Leijen

library and the Hughes-Peyton Jones library. �e inputs were typical JSON and XML �les 1k and

10k lines. �e JSON data was generated by the tool found at h�p://www.json-generator.com/,

which aims to generate typical JSON �les. �e XML �les are typical database-like �les with a

nesting depth of 5. �e results are displayed in Table 1. We observe that our library is capable of

outpu�ing roughly 70.000 lines of pre�y-printed JSON per second. Its speed is roughly 40.000 lines

per second for XML outputs. �is performance is acceptable for many applications, and makes our

library about ten times as slow as that of Wadler-Leijen. �e Hughes-Peyton Jones library stands

in between.

8 CONCLUSION
As Bird and de Moor [1997], Wadler [1987], Hughes [1995] and many others have argued, program

calculation is a useful tool, and a strength of functional programming languages, with a large body

of work showcasing it. Nevertheless, I had o�en wondered if the problem of pre�y-printing had

not been contrived to �t the mold of program calculation, before becoming one of its paradigmatic

applications. In general, one could wonder if program calculation was only well-suited to derive

greedy algorithms.

�us I have taken the necessary steps to put my doubts to rest. I have taken a critical look at the

literature to re-de�ne what pre�y-printing means, as three informal principles. I have carefully

re�ned this informal de�nition to a formal semantics (arguably simpler than that of the state of the

art). I avoided cu�ing any corner and went for the absolute pre�iest layout. Doing so I could not

obtain a greedy algorithm, but still have derived a reasonably e�cient implementation. In the end,

the standard methodology worked well: I could use it from start to �nish.
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Using the�ickSpec tool, Nicholas Smallbone helped �nding a bug in the �nal implementation:

the concatenation operator did not preserve the invariant that lists were sorted.

9 ADDENDUM
A�er this paper se�led to a �nal version, Anton Podkopaev pointed to us that Azero and Swierstra

[1998] proposed pre�y printing combinators with the same semantics as that presented here (no

compromise between greediness and Frugality). However their implementation had exponential

behavior. Podkopaev and Boulytchev [2014] took that semantics and proposed a more e�cient

implementation, which computes for every document its minimal height for every pair ofmaxWidth
and lastWidth. �eir strategy is similar to mine, with the following tradeo�. In this paper I do not

keep track of every witdth and lastWidth, but only of those which lie on the pareto frontier. In

return I have to pay a larger constant cost to sieve through intermediate results. Yet I conjecture

that for non-pathological inputs the asymptotic complexities for both algorithms are the same.
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APPENDIX
9.1 Proof details

Proof of measure being a Layout-homomorphism.

(1) measure (flush a)
≡ measure (a ++ [""])

≡ M {maxWidth = maximum ((map length) (a ++ [""]))

, height = length (a ++ [""]) − 1

, lastWidth = length $ last $ (a ++ [""])

}

≡ M {maxWidth = maximum ((map length a) ++ [0])

, height = length a + 1 − 1

, lastWidth = length ""

}

≡ M {maxWidth = maximum (map length a)
, height = length a − 1 + 1

, lastWidth = 0

}

≡ flush M {maxWidth = maximum (map length a)
, height = length a − 1

, lastWidth = length $ last $ a
}

≡ flush (measure a)
(2) measure (xs <> (y : ys))

≡ M {maxWidth = maximum (map length (init xs ++ [last xs ++ y] ++
map (indent ++) ys))

, height = length (init xs ++ [last xs ++ y] ++ map (indent ++) ys) − 1

, lastWidth = length $ last $ (init xs ++ [last xs ++ y] ++
map (indent ++) ys)

}

≡ M {maxWidth = maximum ((init (map length xs) ++ [length (last xs) +
length y] ++

map (\ y → length (last xs) + length y) ys))
, height = length (init xs) + 1 + length ys − 1

, lastWidth = last ((init (map length xs) ++ [length (last xs) + length y] ++
map (\ y → length (last xs) + length y) ys))

}

≡ M {maxWidth = maximum (init (map length xs) ++
map (\ y → length (last xs) + length y) (y : ys))

, height = (length xs − 1) + (length (y : ys) − 1)

, lastWidth = last (init (map length xs) ++
map (\ y → length (last xs) + length y) (y : ys))

}

≡ M {maxWidth = maximum [maximum (init (map length xs)),
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length (last xs) + maximum (map length (y : ys))]
, height = (length xs − 1) + (length (y : ys) − 1)

, lastWidth = last (map (\ y → length (last xs) + length y) (y : ys))
}

≡ M {maxWidth = maximum [maximum (map length xs),
length (last xs) + maximum (map length (y : ys))]

, height = (length xs − 1) + (length (y : ys) − 1)

, lastWidth = length (last xs) + last $ (map length (y : ys))
}

≡ M {maxWidth = maximum (map length xs)
, height = length xs − 1

, lastWidth = length (last xs)
} <>

M {maxWidth = maximum (map length (y : ys))
, height = length (y : ys) − 1

, lastWidth = length (last (y : ys))
}

≡ measure xs <> measure (y : ys)
(3) measure (text s)

≡ M {maxWidth = maximum (map length [s])
, height = length [s] − 1

, lastWidth = length $ last $ [s]}
≡ M {maxWidth = length s
, height = 0

, lastWidth = length s}
≡ text s

PACM Progr. Lang., Vol. 1, No. 1, Article 6. Publication date: September 2017.


	Abstract
	1 Introduction
	2 Interface (Syntax)
	3 Semantics (informally)
	3.1 The limitations of Hughes and Wadler

	4 Semantics (formally)
	4.1 Layouts
	4.2 Choice
	4.3 Semantics

	5 A More Efficient Implementation
	5.1 Measures
	5.2 Early filtering out invalid results
	5.3 Pruning out dominated results
	5.4 Pareto frontier

	6 Additional features
	6.1 Re-pairing with text
	6.2 Hughes-Style nesting
	6.3 Ribbon length

	7 Performance tests
	7.1 Behaviour at scale
	7.2 Tests for full outputs and typical inputs

	8 Conclusion
	9 Addendum
	References
	9.1 Proof details


