THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

A Theory of
Parametric Polymorphism
and an Application

A formalisation of parametric polymorphism
within and about dependent type-theory, and an
application to property-based testing.

JEAN-PHILIPPE BERNARDY

CHALMERS | GOTEBORG UNIVERSITY

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY AND GOTEBORG UNIVERSITY
Goteborg, Sweden 2011
Revised January 16, 2017 (for errata)

A Theory of Parametric Polymorphism and an Application

A formalisation of parametric polymorphism within and about dependent
type-theory, and an application to property-based testing.

JEAN-PHILIPPE BERNARDY

ISBN 978-91-7385-514-3

(© 2011 JEAN-PHILIPPE BERNARDY

Doktorsavhandlingar vid Chalmers tekniska hogskola
Ny serie nr 3195
ISSN 0346-718X

Technical Report 77D
ISSN 1653-1787

Department of Computer Science and Engineering
Functional Programming Research Group

CHALMERS UNIVERSITY OF TECHNOLOGY and
GOTEBORG UNIVERSITY

SE-412 96 Goteborg

Sweden

Telephone +46 (0)31-772 10 00

Printed at Chalmers
Goteborg, Sweden 2011

iii

A Theory of Parametric Polymorphism and an Application

A formalisation of parametric polymorphism within and about dependent
type-theory, and an application to property-based testing.

JEAN-PHILIPPE BERNARDY

Department of Computer Science and Engineering

Chalmers University of Technology

Abstract

This thesis revisits the well-known notion of parametric polymorphism in
the light of modern developments in type-theory. Additionally, applica-
tions of parametric polymorphism are also presented.

The first part of the thesis presents a theoretical investigation of the se-
mantics of parametric polymorphism of and within type-theories with de-
pendent types. It is shown how the meaning of polymorphic, possibly
dependent, types can be reflected within type-theory itself, via a simple
syntactic transformation. This self-referential property opens the door to
internalise the transformation in type-theory, and we study one possible
way to do so. We also examine how the translation relates to various spe-
cific features of type-theory, such as proof irrelevance and realizability.

The second part is concerned an application of parametric polymorphism
relevant to software engineers. We present a schema to reduce polymor-
phic properties to equivalent monomorphic properties, for the purpose of
testing. Our proof uses parametricity and properties of initial algebras.

Keywords: Types, Polymorphism, Dependent types, Parametricity, Logical
relations, Realizability, Testing, Haskell type-classes

This thesis is based on the work contained in the following papers.

L

II.

II1.

Jean-Philippe Bernardy, Patrik Jansson, and Ross Paterson (2010).
“Parametricity and Dependent Types”. In: Proceedings of the 15th
ACM SIGPLAN international conference on Functional programming. Bal-
timore, Maryland: ACM, pp. 345—356. DOI: 10.1145/1863543.1863592

Jean-Philippe Bernardy and Marc Lasson (2011). “Realizability and
Parametricity in Pure Type Systems”. In: Foundations Of Software Sci-
ence And Computational Structures. Ed. by Martin Hofmann. Vol. 6604.
Lecture Notes in Computer Science. Springer, pp. 108-122

Jean-Philippe Bernardy, Patrik Jansson, and Koen Claessen (2010).
“Testing Polymorphic Properties”. In: European Symposium on Pro-
gramming. Ed. by Andrew Gordon. Vol. 6012. Lecture Notes in Com-
puter Science. Springer, pp. 125-144. DOIL 10.1007/978-3-642-11957-
6_8

http://dx.doi.org/10.1145/1863543.1863592
http://dx.doi.org/10.1007/978-3-642-11957-6_8
http://dx.doi.org/10.1007/978-3-642-11957-6_8

Contents

Introduction 1
1 Backgroundo 000 L.
2 Contents 6
Paper I - Proofs for Free - Parametricity for Dependent Types 11
1 Introduction L 13
2 Pure type systems, withcolour 14
3 Therelational interpretation 19
4 Constants and datatypes 28
5 Internalisation 40
6 Applications L L L L L 44
7 Discussion L oo 51
A Proof of the abstraction theorem 55
Paper II — Realizability and Parametricity in PTSs 63
1 Introduction Lo oL 65
2 Thefirstlevel 67
3 Thesecondlevel 70
4 Thethirdlevel 77
5 Extensions 0 L. 81
6 Related work and conclusion 84
A VectorsfromLists 85
B Detailsofproofs 88
Paper III - Testing Polymorphic Properties 95
1 Introduction 97
2 Examples. o o o 99
3 Generalisation o o 102

vii

viii

N ®W >N o u -

CONTENTS

Moreexamples 112
Related work 117
Futurework 120
Conclusion 121
Applying parametricity 122
Embedding containers 123
Auxiliary results about free distributive lattices 127

References 129

CONTENTS ix

Acknowledgements

Starting doctoral studies after spending many years away from the aca-
demic world is not an obvious thing to do. My warmest thanks go to
the people who made this change of direction possible, and supported it.
Without them this thesis would never have been written. In particular, Ray-
mond Devillers and Darius Blasband recommended me to Sibylle Schupp
who trusted me enough to accept to channel funds into my direction and
provided precious supervision during the first year of my studies.

Many thanks also go to Patrik Jansson, who has supervised me for the last
three years of my studies. His constant support, interest and guidance have
been invaluable. Koen Claessen accepted to co-supervise this work, and
his unparalleled enthusiasm easily blew away any cloud of doubt crossing
my way. My co-authors also deserve the deepest gratitude, as each of them
brought invaluable expertise and broadened my scientific horizons.

All of this work has been greatly facilitated by the environment provided
by the department, whose members, from doctoral students to professors,
constitute an amazing reservoir of knowledge, brilliance, and wisdom. The
less academic aspects of Chalmers are on par, and the administrative staff
gets at least part of the credit for it.

I also wish to thank Stephanie Weirich for accepting the role of faculty op-
ponent, as well as the members of the grading committee: Janis Voigtlan-
der, Patricia Johann and Catarina Coquand.

There are more antecedents to this thesis than space allows me to explicitly
acknowledge in writing. Even though I must stop here, they shall rest
assured that they are not forgotten. But enough looking back! I want to
also thank you, reader, for taking some of the ideas from this volume with
you, allowing them to live further on.

CONTENTS

Introduction

1 Background

1.1 Programming Computers: an Art?

One of the foundational texts of computer science, “The Art of Computer
Programming” (Knuth, 1997), is prefaced with these words:

Here is your book, the one your thousands of letters have asked
us to publish. It has taken us years to do, checking and recheck-
ing countless recipes to bring you only the best, only the inter-
esting, only the perfect. Now we can say, without a shadow
of a doubt, that every single one of them, if you follow the
directions to the letter, will work for you exactly as well as it
did for us, even if you have never cooked before. — McCall’s
Cookbook (1963)

Such an introduction might give the impression that programming is not
quite a science, but rather an art, not in the noble sense of creating attrac-
tive artifacts (music, painting, sculpture, etc.) but in the pragmatic sense
of a collection of techniques learned by practice and observation (as in Sun
Tzu’s “The Art of War”).

The cookbook analogy remains as suggestive today as it was in the past
millennium: it seems that programming remains a business of trial and
error, mostly guided by empirical experience rather than rigorous scientific
inquiry.

A possible reason for this state of affairs is that programming has more
emphasis on the computer rather than the problem it is supposed to solve.
Practitioners of the art focus too quickly on the sequence of operations
that the computer should perform, at the expense of improving their own
understanding of the problem at hand. Often this shift of attention results
in software errors, because it is difficult to keep a good overview of a
program when one thinks of it as millions of elementary instructions.

2 Introduction

1.2 Intuitionistic Programming

We believe that programs are first and foremost constructions of the mind;
and essential to their correctness is therefore the ability of the program-
ming environment to support expressing the intuition of the programmer
as naturally as possible. What this might mean in technical terms is sub-
jective. We remark however that the ability to express oneself naturally
is also an important property of logical systems; and thus we attempt to
transpose some lessons learned from that field. We adopt the view that
intuitionistic type-theory (Martin-Lof, 1984) is the right framework to ex-
press oneself logically, and therefore that an ideal programming language
should incorporate that framework®.

In more detail, two aspects of programming environments are essential to
the construction of correct programs: abstraction, and types.

1.3 Abstraction

Over the years, proverbial pieces of wisdom have emerged to help pro-
grammers to focus on their intent rather than particulars of implementa-
tion. A popular one instructs: — Don’t repeat yourself! — compelling the
programmer to avoid repeating an implementation pattern multiple times.
Sticking to this principle prevents from scattering the implementation of
a single idea over the whole program, forcing to encode it as directly as
possible into the programming language.

Pierce (2002) translates “Don’t repeat yourself” into the following more
technical terms:

Each significant piece of functionality in a program should be
implemented in just one place in the source code. Where sim-
ilar functions are carried out by distinct pieces of code, it is
generally beneficial to combine them into one by abstracting out
the varying parts.

However, abstracting-out common parts is feasible only if the host pro-
gramming language allows it. The binary codes that a computer can na-
tively understand, (as well as their direct symbolic representations) typi-
cally do not allow any kind of abstraction — one is forced to encode high-
level ideas, necessarily obscuring the intent.

More evolved? programming languages allow extracting parts of programs
and using them whenever needed simply by invoking them by name.
When they pieces of program are parametrized by simple values (they
abstract over the actual data to handle), then one call these functions. For

"Hence the title of this section.
?Dare we say more intelligently designed?

1. BACKGROUND 3

example, a list-sorting function can take the list of items to sort as a param-
eter, and returns the sorted list as result. With the advent of FORTRAN
(Metcalf and Reid, 1990) and similar languages, such first-order abstraction
became a commodity available to the majority of programmers.

Further along the line, functional programming languages such as Haskell
(Marlow, 2010) or ML (Robert Milner, Tofte, and Harper, 1990) allow to
abstract over functions themselves, allowing great freedom of abstraction.

1.4 Types

Another language feature which is essential to support construction of
correct programs are fypes. In a nutshell, types enable the programmer
to keep track of the structure of data and computation in a way that is
checkable by the computer itself. Effectively, they act as contracts between
the implementer of the function and its users. Simple type systems such as
that of FORTRAN focus on the interpretation of bit patterns as integers or
rational values. For example, the compiler will warn the user of a function
whenever they attempt to feed a 64-bit integer to a function expecting a
16-bit one.

In languages with higher-order abstraction, such as Haskell or ML, one
can abstract over functions themselves. Types then specify the type of the
functions expected as parameters; and thus the type system becomes much
more expressive.

Advanced type systems, such as that of Agda (Norell, 2007), can capture
any functional property of data and computation: whether a list is sorted,
that a relational database corresponds to a given schema, etc. (Oury and
Swierstra (2008) provide more examples.) If type-checking is performed
statically, when the program is compiled, it then amounts to proving that
such properties hold for all executions of the program, independently of
its input.

The contributions of this thesis are within the realm of functional pro-
gramming with rich type systems. We believe that such programming lan-
guages are the best environments currently available to construct correct
programs, because they allow to:

o freely abstract parts of the program as desired, and conversely freely
combine simple, well-understood functions into more complex parts;
and

e precisely express the intention of the programmer for each function
using types.

4 Introduction

1.5 Parametric Polymorphism

Having briefly introduced the notion of types and abstraction (we refer
the reader to, for example, Pierce (2002) for an extensive discussion), we
are ready to introduce the topic of this thesis: parametric polymorphism.
Indeed, parametric polymorphism combines these two notions, it is ab-
straction over types. The rest of this section uses an example to illustrate the
idea.

Consider the following function, written in a Haskell-like language. It
inserts an integer into a suitable position within a sorted list.

insert : Int — ListInt — ListInt

insertx [| = [x]

insertx (y :t) = if x <y
thenx iyt
else y ::insertxt

The above function does its job adequately, but is unsatisfactory in at least
one aspect: it is not as abstract as possible. For starters, it uses a concrete
comparison function, whereas in principle it could use any notion of or-
dering. Therefore, the particular ordering used can be abstracted, to yield
the following definition:

insert : (Int — Int — Bool) — Int — ListInt — ListInt
insertleqx [| = [x]
insertlegx (y ::t) = if leqxy

thenx iy it

else y ::insertleqxt

This version is more abstract, but misses one crucial aspect of abstrac-
tion. Cursory analysis of the function definition reveals that it is in fact
completely independent of the type of the elements handled. The same
function would work just as well with, for example, characters instead of
integers. This can be captured by adding another parameter to the func-
tion. The type of this parameter is %, the type of types. Since the rest of
the type is dependent on this type argument, it must be named there. The
resulting syntax is illustrated in the following piece of code.

insert: (a:x) — (@ - a — Bool) - a — Lista — Lista
insertaleqx[] = [x]
insertaleqx (y :t) = if leqxy

thenx iy it

else y ::insertaleqxt

The kind of abstraction introduced by the above example is often called
parametric polymorphism, and is the focus of the remainder of this volume.

1. BACKGROUND 5

Before moving on, we shall stress an important characteristic of x, which
remains implicit in the above example. The type of types (x) is itself ab-
stract. That is, a function with a parameter a of type * is forbidden to
behave differently depending on the actual argument given for a. (Still,
merely passing along a’s actual value, or values of type 3, is allowed.) The
prototypical language capturing the concept of parametric polymorphism
is the polymorphic lambda-calculus (Reynolds, 1974). It was developed in-
dependently by Girard (1972). A perhaps more pedagogical introduction
to polymorphism is given by Cardelli and Wegner (1985).

1.6 The relational interpretation of types

As we have previously mentioned, types are a form of contract between
the implementer of the function and its users. By giving a polymorphic
type to a function, implementers promise to handle values abstractly. In
return, the function can be used in a wide variety of applications.

The meaning of the contract can be captured by logical propositions. For
example, the type-declaration of insert gives rise to the following proposi-
tion3:

Vajap — (ag:a; — ap — %) —
Vojop — (VX1X2 — aR X1 X2 —
Vy1y2 = aryiy2 = 01X1y1 == 02Xay2) —
\V/X1X2 — aARX| X2 —
Vxs1xsp — Indexwise ag xsq xsp —
Indexwise aR (insert aj 01 x1 xs1) (insert az 07 x2 xsp)

In the above, aR refers to any relation between the types a; and ap; and
Indexwise lifts the relation to lists, index-wise. The proposition is a theorem,
and its proof can be extracted mechanically from the definition of insert.
In fact, every implementation of insert respecting the contract imposed by
the type would yield a valid proof. This means that the above theorem
holds for any function that has the same type as insert — we know it holds
even before looking at the definition of the function it concerns. Hence,
the propositions coming from the relational interpretation are sometimes
called “free theorems”.

The rules to interpret System F types as relations in second order logic,
as well as the statement that every object must satisfy parametricity, were
given by Reynolds (1983). This interpretation makes the contract (as-type)
accessible to reasoning in a logical framework. Wadler (1989) has taken
advantage of this result to derive useful theorems from the type of usual
functional programs. Much of this dissertation is concerned with extend-
ing this idea to more complex type systems.

3The method to derive it is explained in Paper 1.

6 Introduction

1.7 Programming languages with dependent types

System F is the core type system of many mainstream functional lan-
guages, but recent developments have seen the rise of programming lan-
guages based on even richer type systems. A critical feature of such sys-
tems is that the right-hand-side of a function type can depend on the vari-
able bound by the left-hand-side. A prototypical example is a lookup func-
tion in a tuple of given length n.

lookup: (a:x) = (i:IN) = (n:N) = (i<n) — Vecan — a

Syntactically, the quantification over types ((a : x) — ...) is unified with the
formation of function types ((i : IN) — ...). This syntactical unification is
the central feature of so called Pure Type Systems (PTS) (Barendregt, 1992).
A consequence of such a treatment is that the programming language also
becomes a powerful logical framework.# Propositions can simply be writ-
ten down in the language of types; and inhabitants of the type play the role
of proofs. This unification of types and propositions is central in the next
chapter. With the introduction of dependency on values, types can express
any proposition, and thus they become a very precise specification tool.
This means that it is possible both to specify and implement safety-critical
applications in a single framework.

Languages featuring dependent types include Agda (Norell, 2007), which
is inspired by Martin-Lof type theory (Martin-Lo6f, 1984). The proof assis-
tant Coq, which is based on the calculus of inductive constructions (Co-
quand and Huet, 1986; Werner, 1994), has recently gained popularity as a
framework for expressing verified programs (Leroy, 2009; Chlipala et al.,
2009). Some aspects of dependent types have also made their way into the
Glasgow Haskell Compiler (the most used Haskell compiler).

2 Contents

The rest of the dissertation is comprised of self-contained papers which
discuss various aspects of the notion of parametric polymorphism. We
give here a brief overview that can serve as a reading guide.

2.1 Paper I: Parametricity and dependent types

In Paper I, the concern is to generalise Reynolds’ abstraction theorem for
systems with dependent types. Furthermore, if the framework is suffi-
ciently rich (as Coq or Agda are), the relational interpretation of terms can
be expressed in the same framework as the terms themselves.

4Conversely, proof assistants can be used as programming languages.

2. CONTENTS 7

Technically, for any PTS used as a programming language, there is a PTS
that can be used as a logic for parametricity. Types in the source PTS are
translated to relations (expressed as types) in the target system. Similarly,
values of a given type are translated to proofs that the values satisfy the
relational interpretation.

We also show that the assumption that every term satisfies the parametric-
ity condition generated by its type is consistent with the generated logic.

A consequence is that, for every function written by the programmer, the
theorem that it satisfies its parametricity condition comes for free, and can
be used right along with the original function in a proof assistant. The
net effect is that properties of the type that are given by polymorphism
become available for showing the correctness of the program.

2.2 Paper II: Realizability and Parametricity

Reynolds’ interpretation of types essentially acts as an embedding of Sys-
tem F into second-order logic. The corresponding projection removes
much information from logical formulas to obtain types of System F. The
projection was developed earlier by Girard (1972). The connection between
Reynolds’ and Girard’s interpretations was identified by Wadler (2007).

Whereas Paper I shows how Reynolds’ embedding can be generalised to de-
pendent types, Paper II shows how Girard’s projection can be generalised.
The paper also reveals parallels between parametricity and Krivine-style
realizability.

Additionally, Paper II addresses two shortcomings of Paper I. First, we
show how to handle PTSs with a finite number of sorts: it is not necessary
to extend the PTS of the programming language with an infinite hierarchy
to express the relational interpretation of its terms, as we do in Paper L
Second, the proof of the abstraction theorem is more elegant: by separating
the treatments of terms and types, the proof becomes more structured and
shorter than that presented in Paper I. These two improvements come at
the cost of a longer definition for the relational interpretation of terms.

2.3 Paper III: Testing Polymorphic Properties

Property-based Testing Besides typing, testing is another useful tech-
nique to aid in producing reliable software. It comes into play when pre-
cise typing is either not possible (the type system is too weak to express
the property of interest) or not practical (for example one does not know
yet the right properties to capture in the type). While testing isolated cases
can be necessary to get a grip on the program behaviour, it is often better
to express general properties about functions and let a tool generate test
cases to search for counter-examples (Hughes, 2007).

8 Introduction

Testing Polymorphic Code Polymorphic properties are not so easy to
test in that way though: because testing can only be applied to concrete
values, one must generate monomorphic instances. The problem is to pick
the right set of monomorphic instances to test on. Many approaches are
possible, from the most conservative to the most daring:

1. test on every possible type;
2. test on a type with infinitely many elements; or

3. test on a type with just a few elements (like booleans).

The issue can be quite confusing, and we have anecdotal evidence that
testers often do the wrong thing.

For years, QuickCheck practice has been to use the second approach.
While relatively safe, this method is quite wasteful: one may potentially
perform many redundant tests. In order to speed up testing, Runciman,
Naylor, and Lindblad (2008) suggest the third method. However, if a too
small type is chosen, the generator will consistently miss whole classes of
test cases, giving a false sense of security to the users.

We propose a technique to automatically derive a monomorphic instance
of a polymorphic property aiming at minimising the amount of redundant
testing. We prove, via the relational interpretation of types, that such a
constructed instance covers all the cases possible in the polymorphic case.
In terms of the hierarchy presented above, our technique is as safe as 1.
and more efficient than 2.

Our framework effectively enables testers to take advantage of parametric
polymorphism without requiring them to work with the interpretation of
types as relations, nor leaving them to wonder how to apply it to their
particular problem.

2.4 Statement of personal contribution

The papers in this dissertation are coauthored with other people. My con-
tributions to the papers are as follows:

I. Proofs for free — Parametricity for dependent types
The main contributions of this paper are shared with my co-authors.
Other contributions are solely due to me, such as
o the introduction of coloured pure type systems and the use of
colours in the formulation of the relational interpretation,
e the internalisation of parametricity,

e the irrelevant interpretation of propositions,

2. CONTENTS 9

II.

II1.

o the proof that identity proofs are extensionally equivalent to the
identity.

Ross Paterson is entirely responsible for the proof of correctness of
the inductive parametric interpretation of inductive families.

Realizability and Parametricity in Pure Type Systems

In this paper, my main technical contributions are

o the proof of the abstraction theorem (which is simpler than the
proof presented in the previous paper, at least in some respects),
and

o the theorem reducing realizability to parametricity, as well as its
(straightforward) proof.

The rest of the contributions of the paper are shared with Marc Las-
son, except for the proofs showing that the logical system P? is well-
behaved (e.g. its normalisation property), which are entirely due to
him.

Testing Polymorphic Properties

The technical contributions in this paper are mine. Patrik Jansson
pointed out that the translation to our canonical testing type can be
expressed as embedding-projection pairs. Most examples are due to
Koen Claessen.

10

Introduction

Paper 1

Proofs for Free - Parametricity for Dependent
Types

This paper is an extended and revised version of a paper which appeared
in the proceedings of the International Conference on Functional Program-
ming, 2010, under the title “Parametricity and Dependent Types”. The
present version is under consideration for publication in the Journal of
Functional Programming.

11

Proofs for Free - Parametricity for Dependent
Types

Jean-Philippe Bernardy, Patrik Jansson,
Ross Paterson

Abstract

Reynolds” abstraction theorem shows how a typing judgement in Sys-
tem F can be translated into a relational statement (in second order
predicate logic) about inhabitants of the type.

We obtain a similar result for pure type systems: for any PTS used
as a programming language, there is a PTS that can be used as a logic
for parametricity. Types in the source PTS are translated to relations
(expressed as types) in the target. Similarly, values of a given type are
translated to proofs that the values satisfy the relational interpretation.
We extend the result to inductive families.

We also show that the assumption that every term satisfies the
parametricity condition generated by its type is consistent with the
generated logic.

1 Introduction

Types are used in many parts of computer science to keep track of different
kinds of values and to keep software from going wrong. Starting from the
presentation of the simply typed lambda calculus by Church (1940), we
have seen a steady flow of typed languages and calculi. With increasingly
rich type systems came more refined properties about well-typed terms. In
his abstraction theorem Reynolds (1983) defined a relational interpretation
of System F types, and showed that interpretations of a well-typed term
in related contexts yield related results. If a type has no free variables,
the relational interpretation can thus be viewed as a parametricity property
satisfied by all terms of that type. Almost twenty years ago Barendregt
(1992) described a common framework for a large family of calculi with
expressive types: Pure Type Systems (PTSs). By the CurryHoward corre-
spondence, the calculi in the PTS family can be seen both as programming
languages and as logics. The more advanced calculi go beyond System F
and include full dependent types and support expressing datatypes.

Recent work (Takeuti, 2004; Johann and Voigtldnder, 2006; Neis, Dreyer,
and Rossberg, 2009; Vytiniotis and Weirich, 2010) has developed para-
metricity results for several such calculi, but not in a common frame-
work. In this paper, we apply and extend Reynolds’ idea to a large class

13

14 Proofs for Free - Parametricity for Dependent Types

of PTSs and we provide a framework which unifies previous descrip-
tions of parametricity and forms a basis for future studies of parametric-
ity in specific type systems. As a by-product, we get parametricity for
dependently-typed languages. This paper is an extended and revised ver-
sion of (Bernardy, Jansson, and Paterson, 2010). Our specific contributions
are:

e An extension of the PTS framework to capture explicit syntax (Sec-
tion 2).

e A concise definition of the translation of types to relations (Defini-
tion 6), which yields parametricity propositions for closed terms.

e A formulation (and a proof) of the abstraction theorem for PTSs (The-
orem 8). A remarkable feature of the theorem is that the translation
from types to relations and the translation from terms to proofs are
unified.

e An extension of the translation to inductive definitions (Section 4),
and its proof of correctness.

e A formulation of an axiom schema able to internalise the abstraction
theorem in a PTS. The axiom schema is proved consistent, thanks to
a translation to the PTS without the axioms (Section 5).

e A specialisation of the general framework to constructs such as propo-
sitions, type classes and constructor classes (Section 6).

¢ A demonstration by example of how to derive free theorems for (and
as) dependently-typed functions (sections 3.4, 4 and 6).

Our examples use a notation close to that of Agda (Norell, 2007), for
greater familiarity for users of dependently-typed functional programming
languages. The notation takes advantage of the “implicit syntax” feature,
improving the readability of examples.

2 Pure type systems, with colour

In this section we introduce the notion of coloured pure type system, which
is an extension of PTS as described by Barendregt (1992, sec. 5.2). Colours
capture the fact that various flavours of quantification use different syntax.
Before introducing colours, which we use to improve the clarity of the
relational translation as well as that of examples, we start by reviewing the
plain, monochrome version of PTSs. We introduce our notation along the
way, as well as our running example type systems.

2. PURE TYPE SYSTEMS, WITH COLOUR 15

Definition 1 (Syntax of terms). A PTS is a type system over a A-calculus
with the following syntax:

T = C constant
| vV variable
| TT application
| AV:T.T abstraction
|

VV:T.T dependent function space

We often write (x: A) — B for ¥x: A. B, and sometimes just A — B when x
does not occur free in B. We use different fonts to indicate what category a
meta-syntactic variable ranges over. Sans-serif roman (like x) is used for V,
fraktur (like ¢) for C and italics (like A) for 7. As an exception, the letters
s and t are used for the subset S of C introduced in the next paragraph.

The typing judgement of a PTS is parametrised over a specification S =
(S, A, R), where S CC, A CCS and R C SSS. The set S specifies the
sorts, A the axioms (an axiom (c¢,s) € A is often written ¢ : s), and R
specifies the typing rules of the function space. A rule (s1,s,5,), where
the second and third sorts coincide, is often written s ~ s,.

An attractive feature of PTSs is that the syntax for types and values is
unified. It is the type of a term that tells how to interpret it (as a value,
type, kind, etc.).

The A-cube Barendregt (1992) defined a family of calculi each with S =
{x,0}, A = {x : O} and R a selection of rules of the form s; ~ sy, for
example:

e The (monomorphic) A-calculus has R, = {* ~ %}, corresponding to
ordinary (value-level, non-dependent) functions.

e System F has Ry = R, U {0 ~ x}, adding (impredicative) univer-
sal quantification over types (thus including functions from types to
values).

e System Fw has Rp, = Rg U {0~ O}, adding type-level functions.

e The Calculus of Constructions (CC) has Rcc = Rpo U {x ~ O},
adding dependent types (functions from values to types).

Here x and U are conventionally called the sorts of types and kinds respec-
tively.

Notice that F is a subsystem of Fw, which is itself a subsystem of CC.
(We say that S; = (51,41, Rq) is a subsystem of S; = (S,,. Az, R2) when
S§1C S, A € Ay and R1 € R,.) In fact, the A-cube is so named because
the lattice of the subsystem relation between all the systems forms a cube,
with CC at the top.

16 Proofs for Free - Parametricity for Dependent Types

Sort hierarchies Difficulties with impredicativity® have led to the devel-
opment of type systems with an infinite hierarchy of sorts. The “pure”
part of such a system can be captured in the following PTS, which we
name I,.

Definition 2 (I,,). I, is a PTS with this specification:
e S={x]ieN}
o A={xi:1xi11|i€ N}
o R = { (i, *j, *max(i,j)) | i,] € N}

Compared to the monomorphic A-calculus, » has been expanded into the
infinite hierarchy g, x1,... In I, the sort xy (abbreviated x) is called the
sort of types. Type constructors, or type-level functions have type * — *.
Terms like x (representing the set of types) and x — x (representing the
set of type constructors) have type *; (the sort of kinds). Terms like x; and
* — %1 have type %, and so on.

Although the infinite sort hierarchy was introduced to avoid impredicativ-
ity, they can in fact coexist, as Coquand (1986) has shown. For example, in
the Generalised Calculus of Constructions (CC,,) of Miquel (2001), impred-
icativity exists for the sort x (conventionally called the sort of propositions),
which lies at the bottom of the hierarchy.

Definition 3 (CC,,). CC,, is a PTS with this specification:
e S={x}uU{d;|ieN}
° A:{*ID(]}U{DiZDi+1 ‘ZGN}

e R={x~**~0;,0~*|icN} U
{(Dir D]'r |:lmax(i,j)) | ije N}

In the above definition, impredicativity is implemented by the rules of the
form [J; ~» %,

Both CC and I, are subsystems of CC,,, with %; in I, corresponding to [J;
in CC,. Because U in CC corresponds to Uy in CC,,, we often abbreviate
Oy to O

Many dependently-typed programming languages and proof assistants are
based on variants of I, or CC,,, often with the addition of inductive def-
initions (Dybjer, 1994; Paulin-Mohring, 1993). Such tools include Agda
(Norell, 2007), Coq (team, 2010) and Epigram (McBride and McKinna,
2004).

It is inconsistent with strong sums (Coquand, 1986).

2. PURE TYPE SYSTEMS, WITH COLOUR 17

2.1 PTS as logical framework

Another use for PTSs is as logical frameworks: types correspond to propo-
sitions and terms to proofs. This correspondence extends to all aspects of
the systems and is widely known as the Curry-Howard isomorphism. The
judgement - p : P means that p is a witness, or proof of the proposition P.
If the judgement holds (for some p) we say that P is inhabited.

In the logical system reading, an inhabited type corresponds to a tautology
and dependent function types correspond to universal quantification. A
predicate P over a type A has the type A — s, for some sort s: a value a
satisfies the predicate whenever the type P a is inhabited. Similarly, binary
relations between values of types A; and A; have type A — Ay — s.

For this approach to be safe, it is important that the system be consistent. In
fact, the particular systems used here even exhibit the strong normalisation
property: each witness p reduces to a normal form.

In fact, in I, and similarly rich type systems, one may both represent
programs and logical formulae about them. In the following sections, we
make full use of this property: we encode programs and parametricity
statements about them in the same type system.

2.2 Explicit Syntax: Coloured Pure Type Systems

The complete uniformity of syntax characteristic of classical presentations
of the PTS framework often obscures the structure of ideas expressed
within particular PTSs, and our relational interpretation of terms in no
exception. While mere PTSs are sufficient for most of the technical results
of this paper, the structure of the relational interpretation appears more
clearly when various flavours of quantification are properly identified.

Explicit syntax in PTSs is not novel: many systems usually presented as
PTSs still use different syntax for various forms of quantifications. For
example, traditional presentations of System F use a different syntax for
the quantification over individuals (rule x ~» x) than for the quantification
over types (rule 1 ~ %). A common practice is to use the symbols V and A
for quantification and abstraction over types, and — and A for individuals.
Additionally, brackets are sometimes used to mark type application. While
the flavour of quantification can always be recovered from a type deriva-
tion, the advantage of explicit syntax is that it is possible to identify which
flavour is used merely by looking at the term. Moreover, a type-derivation
tree might not be available.

In this paper we want to give a relational interpretation of terms parame-
terised over any PTS, and retain the possibility to keep syntax annotations.
This is exactly the purpose of Coloured Pure Type Systems: to capture
explicit syntax in a parametrised way. A colour annotation is added to the

18 Proofs for Free - Parametricity for Dependent Types

T = C constant
| vV variable
| T exT application
| Av.T.T abstraction
| VAV:T.T dependent function space
c:se A '-A:s r'-A:B '-C:s
Fes I'x:AEx: A I''x:CHA:B
AXIOM

START WEAKENING

'EA:5 I''x:AFB:sy
T (V*x:A. B) : 53
PRODUCT

(k/ 51,52, 53) ER

[+ F: (V*x:A. B) TFa:A
[+ Fepa: Blx+— 4
APPLICATION

Ix:AFb:B Tk (V*x:A.B) :s

T (X¥x:A. b): (V*x: A. B)
ABSTRACTION

'-A:B '+-B:s B:ﬁB’

Ir-A:B
CONVERSION

Figure 1.1: CPTS syntax for the set of colours X, and typing rules of the
CPTS with specification (IC, S, A, R). The only change with respect to the
standard PTS definition is the addition of colour annotations in product,
application and abstraction.

syntax of application, abstraction and product, and a colour component is

added to R. A rule (k,s1,2,52) is often written slmk»sz. Note that a single
colour may be used in multiple rules. (In the electronic version of this
document, colours are sometimes rendered visually.) The corresponding
typing rules ensure that the colours are matched (Figure 1.1). Erasure of
colour yields a plain (monochrome) PTS; and erasure of colour in a valid
coloured derivation tree yields a valid derivation tree in the monochrome
PTS. Therefore, useful properties of PTSs (such as subject reduction, sub-
stitution, etc.) are retained in CPTSs.

3. THE RELATIONAL INTERPRETATION 19

2.2.1 A colour for naive set-theory

Earlier in this section, we have outlined how PTSs can be used to repre-
sent concepts like propositions and proofs. One may want to use special
syntax for PTS constructs when the propositions-as-types interpretation is
intended: even though propositions and types are syntactically unified in
PTSs, it can be useful to make the intent explicit. Therefore a special colour
might be reserved for the purpose of expressing logical formulae in some
CPTSs. A possible choice of concrete syntax is the following, reminiscent
of naive set theory.

ﬂogic =
| TeT (reverse application)
| {V:T|T} (abstraction)
| YWV:T. T (quantification)

Classic presentations of parametricity use similar syntax, and by simply
choosing this syntax for some of the colours in our PTSs, we are able to un-
derline the similarity of our framework with previous work (Section 3.4).

2.2.2 A colour for implicit syntax

Many proof assistants and dependently-typed programming languages
(including Agda, Coq and LEGO) provide so-called “implicit” syntax. The
rationale for the feature is that, in the presence of precise type information,
some parts of terms (applications or abstractions) can be fully inferred by
the type-checker. In such cases, the user might want to actually leave
out such parts of the terms. It is convenient to do so by marking cer-
tain quantifications as “implicit”. Then, the presence of the corresponding
applications and abstractions can be inferred by the type-checker.

Such marking can be modelled by a two-colour PTS: one colour for regular
syntax, and one for “implicit syntax”. (Typically every rule is available
in both colours.) The syntax of CPTSs does not allow for omission of
terms though, so it can be used only for terms whose omitted parts have
been filled in by the type-checker. Miquel (2001, p. 1.3.2) gives a detailed
overview of two-colour PTSs used for implicit syntax.

3 The relational interpretation

In this section we present the core contribution of this paper: the relational
interpretation of a term, as a syntactic translation from terms represent-
ing programs or types (in a source PTS understood as a programming
language) to terms representing proofs or relations (in a target PTS under-
stood as a logic expressing properties of programming language terms).

20 Proofs for Free - Parametricity for Dependent Types

As we will see in Section 3.4, it is a generalisation of the classical rules
given by Reynolds (1983), extended to all the constructs found in a PTS.

3.1 Preliminaries

Usual presentations of parametricity use binary relations, but for general-
ity we abstract over the arity of relations, n, which we assume is given. We
use an overbar notation to denote parts of terms being replicated #n times
with renaming, defined formally as follows.

Definition 4 (renaming). The term A; is obtained by replacing each free
variable x in the term A by a variable x;.

Definition 5 (replication). A stands for n terms A;, each obtained by re-
naming as defined above. Correspondingly, x: A stands for n bindings
(xj : A;). If replication is used in a binder (abstraction or dependent func-
tion space), then the binder is also replicated.

3.2 From types to relations, from terms to proofs

In this section we present the relational translation of terms. We discuss
the intuition behind each case of the definition before summarizing them
(in Definition 6).

The translation of a sort s forms types of n-ary relations between types of
sort s. In particular, we choose to model relations between types A;,..., Ay
of sort s as terms of type Ay — --- — A, — [s], where [s] is the sort
of propositions corresponding to types of sort s. (In many cases we use
[s] = s.) Thus we define the translation of s as

[s] = AXZ5. %X — [s]

The n lambda-abstractions over the variables X name the parameter types
of sort s, from which the type of relations is formed. Attentive readers
have noted that no colour annotation was written in the above expression.
That is no mistake: in order to keep notation less cluttered we consistently
omit such annotations for the colour assigned to the rules corresponding
to the formation of relations.

Type systems usually include constants that are not sorts, but as their
meaning is unconstrained, we cannot expect a generic translation for them.
We shall deal with such constants in Section 4.

For each type A : s, we wish to define a relation [A] : [s] A. We shall
approach dependent product types through special cases. Firstly, the rela-
tion [A — B] relates functions if they map inputs related by [A] to outputs

3. THE RELATIONAL INTERPRETATION 21

related by [B]:
[A — B] = Af:(A — B). Vx: A. [A] x — [B] (fx)

Secondly, the relation [Vx:s. B] relates polymorphic terms if their instances
at related types are related:

[Vx:s. B] = Af:(Vx:s. B). Vx:s. Vxg:x — [s]. [B] (fx)
= Af:(Vx:s. B). Vxis. Vxgr:[s] %. [B] (fx)

Both of these forms are special cases of the general translation of products
of colour k as follows:

[V¥x: A. B] = Af: (Vkx: A. B). VEix: A. V¥rxg: [A] %. [B] (Ferx)

Products are also types, and hence are also translated to relations via
lambda-abstractions over n functions f. The difference from the case of
sorts is in the body of the relation: a single product of colour k is trans-
lated to two kinds of products, n of colour k;, which introduce n terms X
of type A;, and one of colour k;, which forces them (X) to be related by the
translation of A. (Memory aid: i stands for individual and r for relation.)
The right-hand-side of the product ends the description of how the func-
tions f must be related by requiring that the result of applying f to X be
related by the translation of B.

The translation of applications and abstraction mirror the translation of
product types at the value level: one construct of colour k is mapped to
the same construct in the target, n times with colour k; and once with
colour k,.

[F exa] = [F] o,a o, [a]
[Xx:A. b] = Aix: A, Nrxg:[A] %. [b]

The translation maintains the invariant that for each free variable in the
input x, the output has n + 1 free variables, xy,...,x, and xg, where xg
witnesses that xq, ..., x, are related. Hence, a variable x can be translated
to xR.

The translation of terms is summed up in the following definition, which
gives the mapping [-] from 7 to Txr (Where K is a possibly extended set
of colours) as follows.

22 Proofs for Free - Parametricity for Dependent Types

Definition 6 (parametricity translation from types to relations).

[s] = Ax:5. % — [s]
x| = xr
[V*x: A. B] = Af:(Vkx: A. B). VEix: A. Vorxg :[A] %. [B] (Ferx)
[F exa] = [F] ox,a e, [a]
[¥x: A. b] = XNix: A Xrxg:[A] % [D]

The replication of variables carries on to contexts:

Definition 7.

=
[T, x:A] = [I], x: A, xg:[A] X

Note that each tuple x : A in the translated context must satisfy the rela-
tion [A], as witnessed by xg. Thus, one may interpret [I'] as n related
environments; and A as n interpretations of A, each one in a different
environment.

We can then state our main result:

Theorem 8 (abstraction). Given two suitably related CPTSs S and S” (see Def-
inition 9),
I'ts A:B = [[tFs [A]: [B] A

Proof. By induction on the derivation of I' -5 A : B. Each typing rule in
the derivation of the source judgement can be translated to a portion of
the derivation tree of the target. The START case is a consequence of the
invariant that a relational witness is always introduced in the context when
a variable is bound in the source term. The cases of ABSTRACTION and
APPLICATION stem from the fact that their respective translations follow
the pattern of the translation of the product, as underlined by the colours
used in the translation. The rProDUCT case uses the fact that types are
translated to relations (in [s]), and imposes constraints on the structure
of the target CPTS (see Definition 9 below). In the axiom case, we rely
on the “types-to-relations” principle at two different levels, and further
conditions are imposed on the target CPTS. More details of the proof are
given in appendix A, page 55. O

The above theorem can be read in two ways. A direct reading is as a
typing judgement about translated terms: if A has type B, then [A] has
type [B] A. The more fruitful reading is as an abstraction theorem for pure
type systems: if A has type B in environment T, then 7 interpretations A
in related environments [I'] are related by [B]. Further, [A] is a witness

3. THE RELATIONAL INTERPRETATION 23

of this proposition within the type system. In particular, closed terms are
related to themselves: - A: B = F [A]:[B] A...A.

3.3 From programming language to logic

We have already seen above that the target CPTS of [-] must possess
enough structure for the relational translation to make sense. This sec-
tion details these conditions.

For a particular source CPTS S, we shall require a target CPTS S”, where
the relational counterparts of the source terms can be expressed. For a
first approximation, we assume that the only constants in S are sorts. We
return to the general case in Section 4.

Definition g (reflecting system). A CPTS S" = (K',S", A", R") reflects a
CPTS S = (K,S, A, R) if S is a subsystem of S" and

1. there is a colour 0 € K7, used for relation construction. Annota-
tions for this colour are consistently omitted in the remainder of the
section.

2. there are two functions -; and -, from K to K"
3. for each sorts € S,

e S contains sorts s/, [s], [s'] and [s"]
o A" contains s : s', [s] : [¢'] and [s'] : [s”]
e R’ contains s ~ [s'] and s’ ~ [§"]
4. foreach axioms:t € A, [s'] = [t].
5. for each rule (k,s1,s2,53) € R, R" contains rules (k;, [s1], [s2], [s3])
and Sl’l\g {53‘| .

Remark 10. The above definition is intuitively justified as follows.

1. The colour 0 is used for formation of parametricity relations.
2. For each colour k € IC,
o the colour k; is used for universal quantification over individuals in
logical formulas;
o the colour k, is used for quantifications over propositions in the target

system.

3. For each sort s, the sort [s] is the sort of parametricity propositions about
types in s, and must exist in S". One can see [-] as a function from S to
S

24 Proofs for Free - Parametricity for Dependent Types

For each input sort, the relational interpretation creates redexes, which check
relation membership®. This requires

e cach input sort s to be typeable (i.e. inhabit another sort s' — in the
above definition we consistently use s’ for a sort that s inhabits);
e fwo extra sorts in the target system ([s'], [s""]) on top of [s];

o rules to allow for the formation of relations.
4. The following two relations between sorts must commuite.

o axiomatic inhabitation (A);

o correspondence between a sort of types and a sort of relational propo-
sitions ([-]).

This point is not a strict requirement for the abstraction theorem to hold.
However we found that without this requirement, the structure of the target
system is too unconstrained to make intuitive sense of it.

5. For each type-formation rule of the input system, there is:

e a formation rule for quantification over individuals;

e a formation rule for relational-propositions, exactly mirroring that of
the input system.

Example 1. The system CC,, reflects each of the systems in the A-cube,
with [s] =sand k; =k, = k.

Definition 11 (reflective). We say that S is reflective if S reflects itself with
[s] =sand k; = k, = k.

Example 2. The systems I, and CC,, are both reflective. Therefore we can
write programs in these systems and derive valid statements about them,
within the same PTS.

3.4 Examples: the A-cube

In this section, we show that [-] specialises to the rules given by Reynolds
(1983) to read a System F type as a relation. Having shown that our frame-
work can explain parametricity theorems for System F types, we move
on to progressively higher-order constructs. In these examples, the bi-
nary version of parametricity is used (arity n = 2). We work here in
monochrome systems: K = {1}, and annotations are omitted. Using Defi-
nition 9 one can verify that the following system reflects System F.

e S = {*, |:|, |:|1, [*-‘, ﬂ:ﬂ/ [D]l/ [D—IZ}

2In Paper II we do away with this infelicity at the cost of a longer definition of the relational
interpretation.

3. THE RELATIONAL INTERPRETATION 25

o A={x:0,0:0,[«]:[0],[0]: [0O1], [Dh] : [O2]}

e R = {x v~ x0 ~ %xx ~ [0,0 ~ [O1],07 ~ [Oz], [*] ~
[x], [O] ~ [x]}

Indeed, examination of the structure of the PTS reveals that it corresponds
to a second-order logic with typed individuals, studied multiple times
in the litterature with slight variations, for example by Wadler (2007) or
Plotkin and Abadi (1993). In the PTS form, the sort [x]| is the sort of
propositions. The sort [[J] is inhabited by the type of propositions ([x]),
the type of predicates (1 — [*]), and in general types of relations (T —
-+ = Ty = [%]). The sorts [J; and [J, come from the need to type unim-
portant higher-level redexes created by our translation, and correspond to
the sorts with the same name in CC,,. The product formation rules can be
understood as follows:

e [x] ~ [x] allows to build implication between propositions;

* ~ [allows to quantify over programs in propositions;

O~ [x] allows to quantify over types in propositions;

* ~ [O] is used to build types of predicates depending on programs;

[O] ~ [*] allows to quantify over predicates in propositions.

The other rules, involving [J; and [y, come from the need to type
higher-level relation-membership redexes.

Types to relations Note that, by definition,
[KTiTo = T1 = T2 — [%]

Here we use [*] on the right side as the sort of propositions. This means
that types are translated to relations (as desired).

Function types Applying our translation to a closed non-dependent func-
tion type, we get:

[A— B]:[*](A— B)(A— B)
[[A — B]] fif, = Va;: A. Vap : A. [[A]] aiax — [[B]] (f1 a1) (f2 az)

That is, functions are related iff they take related arguments into related
outputs. The rule is often found in the literature written in set-theoretic
notation, which can be recovered by using the syntax described in Sec-
tion 2.2.1 for the colours 0 and 1;, and special treatment of pairs:

[A — Bl = {(f1, f2) | Va1, a2.(a1,a2) € [A] = (f1 a1, f2 a2) € [B]}

26 Proofs for Free - Parametricity for Dependent Types

Type schemes System F includes universal quantification of the form VA:
*. B. Applying [-] to this type expression yields:

[VA : x. B] : [¥] (YA : x. B) (VA : x. B)
[[VA Lok BH 8182 — VAl Lok VAZ Lok VAR : [[*]] Al Az. [[B]] (gl Al) (gz Az)

In words, polymorphic values are related iff instances at related types are
related. Note that because A may occur free in B, the variables A;, A; and
AR may occur free in [B].

Type constructors With the addition of the rule O ~» O, one can con-
struct terms of type x — %, which are sometimes known as type construc-
tors, type formers or type-level functions. As Voigtldnder (2009b) remarks,
extending Reynolds-style parametricity to support type constructors ap-
pears to be folklore. Such folklore can be precisely justified by our frame-
work by applying [-] to obtain the relational counterpart of type construc-
tors:

[* =] : [O] (x =) (x = *)
[[* — *]] Fl F2 = VA] Dok VAz Dok, [[*H A] Az — [[*]] (Fl Al) (Fz Az)

That is, a term of type [x —] F1 F2 is a (polymorphic) function converting
a relation between any types A; and A, to a relation between F; A; and
Fo Ay, a relational action. For the target system to accept the above, the rules
O~ [O] and [O] ~ [O] must also be added there.

Dependent functions In a system with the rule * ~ [, value variables
may occur in dependent function types like ¥x: A. B, which we translate
as follows:

[Vx: A. B] : [*] (Vx: A. B) (Vx: A. B)
[[VX DA B]] fl fz = Vxl : A VXQ s A VXR : [[A]] X1 X2. [[B]] (fl Xl) (f2 Xz)

Here, the target system is extended with the rule [x| ~ [O]. The rule
* ~ [O] is also required, but is already in the system, as it is required by
the source axiom * : [J as well.

Proof terms We have used [-] to turn types into relations, but we can
also use it to turn terms into proofs of abstraction properties. As a simple
example, the relation corresponding to the type T = (A : x) — A—A,
namely

3. THE RELATIONAL INTERPRETATION 27

[[TH f1 fz = VAl Lok VAz Lok VAR : [[*]] Al As.
Vxl : Al- VXZ : A2. AR X1 X2 —)AR (fl Al X]) (fz A2 Xz)

states that functions of type T map related inputs to related outputs, for
any relation. From a term id = AA : *x.Ax : A.x of this type, by the
abstraction theorem we obtain a term [id] : [T]id id, that is, a proof of the
abstraction property:

[[idﬂ A1 A2 AR X1 X2 XR = XR

We return to proof terms in Section 4.3 after introducing datatypes.

3.5 Implicit syntax

In the following sections, our examples are written using Agda syntax, and
take advantage of the implicit syntax feature. The following colour-set is
used: K = {e,i} (e = explicit colour; i = implicit colour). Rather than using
colour annotations, the following (Agda-style) concrete syntax is used.

Definition 12 (Agda-style syntax for two-colour PTS).

T = C constant
| v variable
| TT application
| AV:T.T abstraction
| V:T)—=T dependent function space
| TA{T} implicit application
| AMV:THT implicit abstraction
|

{V:T} =T implicit dependent function space

Additionally, implicit abstraction and application may be left out when
the context allows it (we don’t formalise this notion). We use the following
colour-mappings:

O—e
ip—e i
err—e ej— 1

The instantiation of [-] (Definition 6) to the above mapping yields the fol-
lowing translation if written with Agda-style syntax.

Example 3 (translation from types to relations, specialised to implicit ar-

28 Proofs for Free - Parametricity for Dependent Types

guments).

[s] = Ax:5. X — [5]
Xl =xr
[(x:A) = B] = Af:((x:A) = B). {x:A} = (xg:[A] %) = [B] (Fx)
[Fal = [FI{a} [a]
[Ax: A. b] = A{x: A}. Axg:[A] %. [b]
[{x: A} = B] = AT (AT = B). {54} — G- [A1%) — [B] (Fxh)
[F{a}] = [F]{a} [a]
[Mx:A}. b] = A{x: A}. Axg:[A] % [b]

The usage of implicit syntax in the translation is not innocent: it is care-
fully designed to take advantage of the type-inference mechanism to allow
shorter expressions of the translations. For example, [id], generated from
id : T can now hide four out of six abstractions:

[[Idﬂ AR XR = XR

This example is typical. Indeed, we observed that for all terms A of type
B, given the typing constraint [A] : [B] A, arguments can be inferred at
every implicit application in the expansion of [A]. Likewise, every implicit
abstraction is inferable and can be omitted. We have found these shortcuts
to be essential to readability, as they hide much of the noise generated by
the relational transformation. Therefore, we have taken advantage of in-
ference wherever possible in the examples presented in this paper, starting
from Section 4.

4 Constants and datatypes

While the above development assumes as input pure type systems with
C = §, it is possible to add constants to the system and retain para-
metricity, as long as each constant is parametric. That is, for each new
(“impure”) axiom kg ¢ : A (where ¢ is an arbitrary constant and A an arbi-
trary term, not a mere sort) we require a term [c¢] such that the judgement
Fsr [¢] : [A] ¢ holds. If the constants come with additional B-conversion
rules, the translation must also preserve conversion so that Lemma 19
holds in the extended system: for any term A involving ¢, A —5 A’ =
[A] — [A'].

One source of constants in many languages is datatype definitions. In
the rest of this section we investigate the implications of the parametricity
conditions on datatypes, and give two translation schemes for inductive
families (as an extension of I,). In Section 4.3 we show how the term [

4. CONSTANTS AND DATATYPES 29

can be constructed from pairs and units while in Section 4.4 we define it
using another datatype definition (in which we have a constructor named

[<D)-

4.1 Parametricity and elimination

Reynolds (1983) and Wadler (1989) assume that each type constant K : x is
translated to the identity relation. This definition is certainly compatible
with the condition required by Theorem 8 for such constants: [K] : [*] KK,
but so are many other relations. Are we missing some restriction for con-
stants? This question might be answered by resorting to a translation to
pure terms via Church encodings (Bohm and Berarducci, 1985), as Wadler
(2007) does. However, in the hope to shed a different light on the issue, we
give another explanation, using our machinery.

Consider a base type, such as Bool : %, equipped with constructors true :
Bool and false : Bool. In order to derive parametricity theorems in a sys-
tem containing such a constant Bool, we must define [Bool], satisfying
k= [Bool] : [*] Bool. What are the restrictions put on the term [Bool]? First,
we must be able to define [true] : [Bool] true. Therefore, [Bool] true must
be inhabited. The same reasoning holds for the false case.

Second, to write any useful program using Booleans, a way to test their
value is needed. This may be done by adding a constant

if :Bool > (A:%) = A—=A—=A

such that if true Axy —4 x and if false Axy — g y.

Now, if a program uses if, we must also define [if] of type
[Bool — (A:%) — A — A — A]if

for parametricity to work. Let us expand the type of [if] and attempt to
give a definition case by case:

[if] : {b1 by : Bool} — (bg : [Bool] by by) —
{Al Ay *} — (AR : [[*]] Aq Az) —
{x1: A1} =2 {x2: A2} = (xg : ArRx1 x2) —
tyi:A} = {y2: A} = (YR: ARY1Y2) =
AR (if by A1 x1 y1) (if b2 Ax X2 y2)

[[Iﬂ] {true} {true} bR,XR YR = XR

[if[{true} {false}br _xryR = ?

[[Iﬂ] {false}{true} bR _XRYR = ?ft

[if] {false} {false} br _xryr = YR

(From this example onwards, we use a layout convention to ease the read-
ing of translated types: each triple of arguments, corresponding to one

30 Proofs for Free - Parametricity for Dependent Types

argument in the original function, is written on its own line if space per-
mits.)

In order to complete the above definition, we must provide a type-correct
term for each question mark. For ?tf, this means that we must construct
a term of type Agxj y2. Neither xg : Ag xq X2 nor yg : Agyj y2 can help us
here. The only liberty left is in bg : [Bool] true false. If we let [Bool] true false
be falsity (), then this case can never be reached and we need not give an
equation for it. This reasoning holds symmetrically for ?g. Therefore, we
have the restrictions:

[Bool] xx = some inhabited type
[Bool]xy = ifx#y

We have some freedom regarding picking “some inhabited type”, so we
choose [Bool] xx to be truth (), making [Bool] an encoding of the identity
relation.

An intuition behind parametricity is that, when programs “know” more
about a type, the parametricity condition becomes stronger. The above ex-
ample illustrates how this intuition can be captured within our framework:
having the eliminator if constrains the interpretation of Bool. We will make
further use of this in Section 6.2.

4.2 Inductive families

Many languages permit datatype declarations for Bool, N, List etc. Depen-
dently typed languages typically allow the return types of constructors
to have different arguments, yielding inductive families (Paulin-Mohring,
1993; Dybjer, 1994) such as the family Vec, in which the type is indexed
by the number of elements. In Figure 1.2 we introduce Agda data syntax
and some example datatypes and inductive families which will be used
later, including the sigma type ¥ which contains (dependent) pairs and
the identity relation _ = _ which contains proofs of reflexivity. We some-
times write (x: A) x B for & A (Ax:A. B), and elements of this type as
(a,b), omitting the arguments A and Ax:A. B, handled by implicit syntax.
For any values x and y of type A, the term x=y is a type, but only the
types on the diagonal x = x are inhabited (by the canonical term refl).

In an “impure” PTS setting datatype declarations can be interpreted as a
simultaneous declaration of formation and introduction constants and also
an eliminator and rules to analyse values of that datatype.

Example 4. The definition of List in Figure 1.2 gives rise to the following
constants and rules:

List (A k) = %
nil :{A:x} — ListA

4. CONSTANTS AND DATATYPES 31

data : xwhere dataList (A : x) : xwhere
-- no constructors nil : ListA
data : «where cons : A — List A — List A
tt: dataVec (A : x) : N — xwhere
data Bool : x where nilV:: Vec Azero
false : Bool consV : A — (n:IN) — VecAn — VecA (succn)
true : Bool dataX (A:) (B: A — %) : xwhere
datalN : x where __:(a:A)>Ba—XAB
zero : N data_=_{A:x}(a:A):A— xwhere

succ: IN — IN refl :a=a

Figure 1.2: Examples of simple datatypes and inductive families (introduc-
ing Agda datatype syntax through well-known examples).

cons :{A:x} — A — ListA — ListA

List-elim: {A:x} — (P : ListA — %) —
(base : P nil) —
(step: (x:A) — (xs: ListA) — Pxs — P (consxxs)) —
(ys: ListA) — Pys

List-elim P base step nil = base

List-elim P base step (consxxs) = stepxxs (List-elim P base step xs)

Note that the datatype parameter A is an implicit parameter of the con-
structor and eliminator constants.

More generally, family declarations of sort s (x in the examples) have the
typical form:3

data T (a:A) : (n:N) — s where
c:(b:B) = (u:((x:X) > Tai)) > Tav

Arguments of the type constructor T may be either parameters a, which
scope over the constructors and are repeated at each recursive use of T,
or indices n, which may vary between uses. Data constructors ¢ have
non-recursive arguments b, whose types are otherwise unrestricted, and
recursive arguments u with types of a constrained form (% cannot appear
in X).

In PTS style we have the following formation and introduction constants

T:(a:tA) —» (n:N) —s -- type
¢c:{a:A} - (b:B) = (x:X) > Tai) >Tav --constructor

3We show only one of each element (parameter a, index n, constructor ¢, etc.) here. The
generalisation to arbitrary numbers is straightforward but notationally cumbersome.

32 Proofs for Free - Parametricity for Dependent Types

and also a corresponding eliminator:

T-elim: {a: A} —
(P:((n:N) > Tan—s)) —
Case, = (n:N) — (t:Tan) > Pnt

where the type Case. of the case for each constructor ¢ is

(b:B) = (u:((x:X) = T ai)) = ((x:X) > Pi(ux)) > Pov(c{a} bu)
with one evaluation rule (B-reduction) for each constructor c:

T-elim{a} Pev (c{a} bu) =ebu (Ax:X. T-elim {a} Pei (ux)) (1.1)

As in the List example, the datatype parameter A is an implicit parameter
of the constructor and eliminator constants.

We often use corresponding pattern matching definitions instead of these
eliminators (Coquand, 1992).

In the following sections, we consider two ways to “generically” define a
proof term [c¢] : [T] ¢...c for each constant ¢ : T introduced by the data
definition.

4.3 Deductive-style translation

In Section 4.1 we gave a definition of [Bool] and [if] for a simplified elimi-
nator if. In this subsection we present similar deductive-style translations
for several concrete examples, and then deal with the general case. We
define each proof as a term (using pattern matching to simplify the pre-
sentation) built up from simpler building blocks (pairs and units). (In
Section 4.4 the inductive style translation we instead translate datatypes to
families; data to data.)

Lists From the definition of List in Figure 1.2, we have the constant List :
* — *, so List is an example of a type constructor, and thus [List] should
be a relation transformer. As with [Bool], lists are related only if their
constructors match. Two nil lists are trivially related; as in the Bool case
we use for the nullary constructor. Two cons lists are related only if their
components are related; the proof of that relationship is a pair of proofs
for the components, represented as a product ():

JList[: [x — =] List List

JList] Ag nil nil =

[List[AR (consxq xs1) (consxp xsp) = Arxyxa [List[AR xs1 xsp
JList] Ag — _ -

4. CONSTANTS AND DATATYPES 33

This is exactly the definition of Wadler (1989): lists are related iff their
lengths are equal and their elements are related point-wise. The transla-
tions of the constructors build the corresponding proofs:

[nil] : [(A : %) — List A] nil nil

[nil] AR = tt

[cons] : [(A: %) — A — List A — List A] cons cons
[cons] AR xgr xsg = (xR, xsR)

List rearrangements The first example of a parametric type examined by
Wadler (1989) is the type of list rearrangements: R = (A : x) — ListA —
List A. Intuitively, functions of type R know nothing about the actual argu-
ment type A, and therefore they can only produce the output list by taking
elements from the input list. Here we recover that result as an instance of
Theorem 8.

Applying the translation to R yields:

IRI:R—=R— %

HR[[I’l rh = {Al Ay : *} — (AR : [[*]] Aq Az) —
{xs1 : List A1} — {xsp : List Ay} — (xsg : JList[Ag xs1 xs2) —
JList[Ar (r1 A1 xs1) (r2 Ag xsp)

In words: two list rearrangements r; and rp are related iff for all types A;
and A with relation AR, and for all lists xs; and xsp point-wise related by
AR, the resulting lists r; Aj xs; and ry Ay xsp are also point-wise related by
AR. By Theorem 8, [R] rr holds for any term r of type R. This means that
applying r preserves (point-wise) any relation existing between input lists
of equal length. By specialising Ag to a function (ARaja; = fa; =ap) we
obtain the well-known result:

(A1 Ay %) = (f: A = Ap) — (xs: ListAy) —
mapf (rA;xs) =r Ay (mapfxs)

(This form relies on the facts that [List] preserves identities and composes
with map.)

Proof terms We have seen that applying [-] to a type yields a parametric-
ity property for terms of that type, and by Theorem 8 we can also apply
[-] to a term of that type to obtain a proof of the property. As an example,
consider a rearrangement function odds that returns every second element
from a list:

odds: (A:x) — ListA — ListA
odds A nil = nil

34 Proofs for Free - Parametricity for Dependent Types

odds A (consxnil) = consxnil
odds A (consx (cons _xs)) = consx (odds Axs)

Any list rearrangement function must satisfy the parametricity condition
[R] seen above, and [odds] is a proof that odds satisfies parametricity. Ex-
panding it yields:

[odds] : [(A: x) — List A — List A] odds odds

[odds] Ag {nil} {nil} _ = tt

[odds] Ag {consxg nil } {consxz nil} (xR, -) = (xR, tt)

[odds] Ag {consx; (cons _xs1) } {consx, (cons _xsp) } (xR, (L, xsR)) =
(xR, [odds] Ag {xs1 } {xs3 } xsR)

We see (by textual matching of the definitions) that [odds] performs es-
sentially the same computation as odds, on two lists in parallel. However,
instead of building a new list, it keeps track of the relations (in the R-
subscripted variables). This behaviour stems from the last two cases in the
definition of [odds]. Performing such a computation is enough to prove
the parametricity condition.

Vectors The translations of the constants of Vec are simple extensions of
those for List, with the additional requirement that sizes be related by the
identity relation [IN]:

[Vec[: [(A: %) — IN — *] Vec

[Vec[Ag Jzero | nilV nilV =

JVec[Ar {succny } {succny } ng (consV ny xq xs1) (consV npxp xsp) =
AR X1 X2 (nR :]]Nat[[nl nz)]]Vec[[AR nR

[Vec[Ar (Jsucc[ng) xs1 xsp =

[nilV : [{A : x} — VecAzero] nilV

[nilV[AR = tt

JeonsV[: [{A: %} = A — (n:IN) — VecAn — VecA (succn)] consV

JeonsV[AR xg nrxsR = (xR, (nR,xsg))

In the List example above we omitted the translation of the elimination
constant List-elim. Here we shall handle the more complex Vec-elim, which
has the type

Vec-elim: {A:x} —
(P:(n:N) — VecnA — %) —
(en: Pzero(nilVA)) —
(ec: (x:A) — (n:IN) — (xs: VecnA) —
Pnxs — P (succn) (consVxnxs)) —
(n:IN) = (v:VecnA) = Pnv

The translation of this constant has a large type, but a simple definition:

4. CONSTANTS AND DATATYPES 35

[Vec-elim] : | {A:x} —
(P:(n:IN)— VecnA — %) —
(en: Pzero (nilVA)) —
(ec: (x:A) — (n:IN) = (xs:VecnA) —
Pnxs — P (succn) (consVxnxs)) —
(n:IN) = (v:VecnA) — Pnv[Vec-elim
[Vec-elim] Ag Prengecg — {nilV} {nilV} _ = eng
[Vec-elim] AR Pg eng ecg ng { consV xq ny xsq } {consV xp np xsp } (xR, (nR, xsR))
= ecRr XR NR xSR ([Vec-elim] Ag PR eng ecg ng xsR)

Dependent pairs Two pairs (al,by) and (a2,by) are related by [AB] if
their respective components are related (by [A] and by [B]). A constructive
reading is that a proof that two pairs are related can be represented as a
pair of proofs. This generalises nicely to the dependent case: a dependent
pair (of the ¥ type from Figure 1.2) translates to another dependent pair.
That is, a pair (a,b) : X AB (where a : A and b : B a) translates to

([a], [bD) : [Z] [A] [B] (a1,b1) (a2, b2)
where

[[Z]] : {A] Ap: *} (AR : [[*]] Al Az)
{Bl : Aq —)*}{Bz:A2—>*}
(Br:{a1: A1} {a2: Ao} = Araraz — [x] (Bya1) (B2az)) —
[x] (A1 By) (ZA2By)
[[Z]] AR Br (al,bl) (az,bz) =X (AR al 32) ()\aR — Brarbg bz)

Inductive families — general case For the “typical form” of an inductive
family we begin with the translation of equation (1.1) for each constructor
%

[Z-elim {a} Pe o] (c {a} bu) ([c] {3} ar {b} br {U} ur) = [RHS] (1.2)

for RHS = e b u (Ax:X. T-elim {a} P e i (ux)). To turn this into a pattern
matching definition of T-elim, we need a suitable definition of [¢], and
similarly for the constructors in v. The only arguments of [¢] not already
in scope are br and ug, so we package them as a dependent pair, because
the type of ug may depend on that of bg. We define

[Z] : [(a:A) = (n:N) =] T B

[5) {3} o {5} [o] (c{a}bu) = (br:[B]B) x [(:X) > Tailu
(5] {a} ar {0} up -

[c] : [({a:A}) = (b:B) = ((x:X) > Tai) > Tav]c

[c]ar brur = (br,uR)

36 Proofs for Free - Parametricity for Dependent Types

Substituting the above definition of [¢] into equation (1.2), we obtain a
clause for the definition of [Z-elim]:

[T-elim {a} Pev] (¢ {a} bu) (bg,ur) = [RHS]

These clauses cover only cases where the constructors match, but because
[X] yields L otherwise, that is complete coverage.

We leave as future work to determine what syntactic restrictions are re-
quired on the inductive families to guarantee that the translation of the
eliminator and its reduction rule are inductively well-founded.

4.4 Inductive-style translation

Another way of defining the translations [¢] of the constants associated
with a datatype is to use an inductive definition (using data) in contrast to
the deductive definitions (construction using pairs and units) of the previ-
ous section.

Deductive and inductive-style translations define the same relation, but the
objects witnessing the instances of the inductively defined-relation record
additional information, namely which rules are used to prove membership
of the relation. However, since the same constructor never appears in more
than one case of the inductive definition, that additional content can be
recovered from a witness of the deductive-style; therefore the two styles
are isomorphic. This will become clear in the upcoming examples.

Booleans For the data-declaration of Bool (from Figure 1.2), we can de-
fine translations of the datatype and its constructors directly with another
inductive definition:

data [Bool] : [x] Bool where
[true] : [Bool] true
[false] : [Bool] false

The main difference from the deductive-style definition is that it is possi-
ble, by analysis of a value of type [Bool], to recover the arguments of the
relation (either all true, or all false).

The elimination constant for Bool is
Bool-elim : (P : Bool — x) — Ptrue — Pfalse — (b : Bool) = Pb

Similarly, our new datatype [Bool] (with arity n = 2) has an elimination
constant with the following type:

[Bool]-elim : (C: (aj ap : Bool) — [Bool]ajap — %) —
Ctruetrue [true] — Cfalsefalse [false] —
{bl by : BOO|} — (bR : [[BOO|]] by b2) — Cbl by bR

4. CONSTANTS AND DATATYPES 37

We can define [Bool-elim] using the elimination constants Bool-elim and
[Bool]-elim as follows

[Bool-elim] :
{P1P; : Bool = x} — (Pg : [Bool — %] P1 Py) —
{x1:Pytrue} — {x : Pytrue} — (Pg[true]xixp) —
{y1:Pifalse} — {ys : Pyfalse} — (Pg[false] y1y2) —
{b1 by : Bool } — (bg : [Bool] by by) —
PR bR (Bool—elim Pl X1VY1 bl)
(Bool-elim P2 X2 Y2 bz)
[Bool-elim] {P1} {P2} Pr{x1} {x2} xr {y1} {y2} yr
= [Bool]-elim
()\ by b, bg — Prbgr (Bool—elim P1x1y1 b1)
(Bool—elim P2 X2 Y2 bz))
XRYR

Lists For List, as introduced in Figure 1.2, we can again define transla-
tions of the datatype and its constructors with a corresponding new induc-
tive definition:

data [List] (JA : *]) : [*] (List A) where
[nil] : [List A] nil
[cons] : [A — List A — List A] cons

or after expansion (for n = 2):

data [List] {A; Ay : %} (Ar : [*] A1 Ag) : ListA; — List Ay — * where
[nil] : [List] Ag nilnil
[eons] : {x1: A1} = {x2: A2} = (xR : ARx1 X2) —
{xs1 : List A1} — {xsp: List Ay} — (xsg : [List] Agxs1 xs3) —
[List] AR (consxq xsp)
(consxp xsp)

The above definition encodes the same relational action as that given in
Section 4.3. Again, the difference is that the derivation of a relation between
lists xs; and xsp is available as an object of type [List] Ag xs1 xs.

Proof terms The proof term for the list-rearrangement example can be
constructed in a similar way to the inductive one. The main difference is
that the target lists are also built and recorded in the [List] structure. In
short, this version has more of a computational flavour than the deductive
version.

[odds] : [(A: x) — List A — List A] odds odds
[odds] Ag [nil] = [nil] Ag

38 Proofs for Free - Parametricity for Dependent Types

[odds] Agr ([cons] xg [nil]) = [cons] Agrxg ([nil]] AR)
[odds] Ag ([cons] xg ([cons] —xsg)) = [cons] Ag xg ([odds] Ag xsgr)

Vectors We can apply the same translation method to inductive families.
For example, the translation of the family Vec of lists indexed by their
length is

dataVec[([A: %]) : [N — %] (VecA) where
InilV[: [Vec A zero] nilV
JeonsV[: [{x:A} — (n:IN) — VecAn — VecA (succn)] consV
dataVec[{A1 Az : *} (AR : A — Ay — %) :
{niny :IN} = (ng: [N]nynp) —
Vec A1 n; — Vec Ay np — x where
[nilV[: JVec[AR [zero] nilV nilV
]]COHSV[[: {Xl IA]} — {Xz : Az} — (XR : ARxl X2) —
{n1ny:IN} = (ng: [N] nynp) —
{xs1 : VecAini} — {xsp: VecAyny } —
(xsg : [Vec[AR nR xs1 xs2) —
JVec[Ar (Jsucc[ng) (consV x1 n1 xs1) (consV xp np xs;)

The relation obtained by applying [-] encodes that vectors are related if
their lengths are the same and if their elements are related point-wise. The
difference with the List version is that the equality of lengths is encoded in
[consV] as an [Nat[(identity) relation.

As in the Bool case, we can define the translation of Vec-elim in terms of
[Vec]-elim:

JVecelim[:[{A:x} —
(P:(n:IN) = VecnA — %) —
(en: Pzero (nilVA)) —
(ec: (x:A) = (n:IN) — (xs: VecnA) —
Pnxs — P (succn) (consV Axnxs)) —
(n:IN) — (v:VecnA) — Pnv[Vecelim
] Vec-elim AP enec] = [Vec]-elim Ag
(A]n: Nat,v:VecnA[.]Pnv[(Vec-eimAPenecv))
enR

(A]x: A, n:Natxs: VecnAf.]Jecxnxs[(Vec-elim AP enecxs))

Inductive families — general case Starting from an inductive family of
the same typical form as in the previous section:

data T (a:A) : K where
c:C

4. CONSTANTS AND DATATYPES 39

where K = (n:N) - sand C = (b:B) —» ((x:X) > Tai) > Tawv,
by applying our translation to the components of the data-declaration, we
obtain an inductive family that defines the relational counterparts of the
original type ¥ and its constructors ¢ at the same time:

data [T] [a: A] : [K] (T a) where
[e] = 1€ (e {a})
It remains to supply a proof term for the parametricity of the elimination

constant T-elim. We start by inlining C and K; the inductive family is
parametrised on A, indexed by N and has the form

data T (a:A): (n:N) — s where
¢:(b:B) = ((x:X) > Tai) > Tav

The translated family is parametrised by a relation on A and lifts rela-
tions on N to relations on T a n. The definition follows from mechanical
application of [-] to K and C:

data [T] (a:A) (ar:[A] @) : {n:N} = (ng:[N]) = Tan — [s] where
[c] : {b:B} — (br:[B] b) = [((x:X) = Tai) - Tav] (c{a} b)

Each inductive family comes with an elimination constant, and for elimi-
nation of [%] to sort [s.] it has type

[Z]-elim : {a7};> {ar:[A] 3} —
(Q:{n:N} = (ng:[N]7) = (t:Tan) = [Tan]t— [s]) —
Casep =
{n:N} = (ng:[N]7) = (t:Tan) = (tr:[Tan]t) > Q{f} ngttg

where Case[] is

{b:B} — (br:[B] b) —
{ULX:X) —Tai} — (uR:[(x:X) = Tai]u) —
(fx: X} = O [X] %) = Q {i} [i] (ux) [ux]) =

Q {7} [v] (¢ {a} bu) [c{a} by]

Using the eliminator ([]-elim) of the translated family and the eliminator
(%-elim) of the original family, the proof term [Z-elim] can be defined as
follows:

[Z-elim] : [{a:A} — (P:((n:N) - Tan—s)) — (e:Case;) —

(n:N) = (t:Tan) = Pnt] T-elim
[T-elim {a} P e] = [Z]-elim {3} {agr} Qf

40 Proofs for Free - Parametricity for Dependent Types

where

Q{n}ngttg =[Pnt] (T-elim{a} Pent) (1.3)
f {b} bg {u} ugr = [ebu] {(Ax:X. T-elim{a} Pei(ux))} (1.4)

We proceed to check that f has the right return type. Because
ebu:((x:X) >Pi(ux)) —>Pov(c{a}bu)

we have (by the abstraction theorem)

[[ebu]]:{pLx:X) —Pi(ux)} —
(X} = (= [X] %) = [P i (ux)] (px)) =
[Pv(c{a} bu)] (ebup)

and hence the type of f {b} bg {U} uR is:

({x: X} = (xg:[X] X) = [P i (ux)] (Z-elim {a} Pei (ux))) —
[Pv(c{a}bu)] (ebu(Ax:X. T-elim {a} Pei (ux)))

= {ﬁtatype equation (1.1) from page 32 }
({x: X} = (xg:[X]X) = [P i (ux)] (Z-elim {a} Pei (ux))) —
[Pv(c{a} bu)] (T-elim{a} Pev (c{a} bu))

= {ﬁﬁnition of Q(13) }
(X} - (e IX1%) — Q {7} [@) [u <) -

Q {7} [¢] (¢ {a} bu) [e{a} by]

5 Internalisation

We know that free theorems hold for any term of the PTS S (and these
theorems are expressible and provable in S”). Unfortunately, users of the
logical system S” which reflects S cannot take advantage of that fact: they
have to redo the proofs for every new program (even though the proof is
derivable, thanks to [-]). We would like the instances of the abstraction
theorem to come truly for free: that is, extend S” with a suitable construct
that makes parametricity arguments available for every program in S. To
do so, we construct a new system S}, which is the system S” extended with
following axiom schema:

Axiom 13 (parametricity). For every closed type B of sort s (s B : s), as-
sume
paramp : Vkix:B. [B] x...x

The consistency of the new system remains to be shown. This can be
done via a sound translation from S}, to S”. A first attempt would be to
extend do so by translating paramp A into [A]. Unfortunately, the above

5. INTERNALISATION 41

fails if A is an open term, because [A] contains occurrences of the variable
xR, which is not bound in the context of paramg A. Therefore we need
a more complex interpretation. Even with a more complex interpretation
accounting for free variables in A, we need to stick to closed types. Indeed,
if the type B were to contain free variables, the type of paramp would not
be well-scoped.

Parametricity witnesses Our attempt to show consistency by giving a
local interpretation of the parametricity principle failed. Therefore, we
instead can do a “global” transformation of a closed term in S}, to a term
inS".

The idea is to transform the program such that, whenever a variable (x : A)
is bound, a witness (xg : [A] x...x) that x satisfies the parametricity con-
dition is bound at the same time. This means that functions are modified
to take an additional argument witnessing that the original arguments are
parametric. This additional argument is then used to interpret occurrences
of x in the argument of paramp. At every application, the parametricity
witness can be reconstructed, using the [-] translation of the original argu-
ment. For example, the context

N :x%
suc:IN —- IN
m :IN

X i [x]

p :N—X

would be translated to:

N %

INat[: N — IN — [x]

suc :IN—IN

Jsuc[: JIN — N [sucsuc

m :IN

m[:]JIN[mm

X i [x]

p :(n:IN) = [N]nn — X

The term p (sucm) is typeable in the source context, and would be trans-
lated to p (sucm) (Jsucm[). In the same context, parampy m would merely
be translated to Jm[.

General case In the rest of the section, we define the translation (- |) from
terms of S}, to terms of S”. The translation is similar to [-], with a number
of differences:

42 Proofs for Free - Parametricity for Dependent Types

e The new translation deals with a richer language: there is a struc-
ture in the space of sorts, which can be either of the form s or [s].
Further, it does not duplicate the bindings whose types are not in
the source language (the sort is of the form [s]). Therefore it be-
haves differently depending on this sort, and using sorts, we must
therefore distinguish two parts of the PTS: one (the source language
of [-]), which deals with programs and types of sort s and another
which deals with parametricity proofs and propositions of sort |[s|
(the target language).

e The translation does not transform types to relations.

e The new translation does not replicate the bindings: it adds at most
one additional binding, regardless of the arity of param. A conse-
quence is that the renaming operation (Definition 4) must be modi-
fied, such that occurrences of variables bound in bindings processed
by (| - |) are not renamed.

As hinted above, (- |) does not work on all possible system S’. The precise
set of restrictions is as follows.

Definition 14 (Restrictions for internalisation).

1. Let [S] = 8" = S. If s € S, then [s] € [S]. This ensures that the
sorts of types of the sources language can always be distinguished
from the sorts of propositions.+

2. If (k,51,52,83) € R" and s3 € S, thens; € S and s; € S. This ensures
terms and types of the source language can contain no propositions
of parametricity nor their proofs.

3. Let Ky € K and Ky = K — Ky. (In the following we will use the meta-
syntactic variable a for colours in the first group and b for colours in
the second one.) If (k,s1,92,53) € R thens; € S + k € K.

This ensures that quantifications over terms in the input language
can be recognised syntactically from quantifications over parametric-
ity propositions and proofs. This requirement is for convenience
only, as suitable colours can be inferred from a typing derivation.

4. For each rule slmv» [sz] there must be a colour t, € K, and a rule
ty
[s1]~=[s2].
For example, the system described in Section 3.4 satisfies these conditions.

In the following, we assume that paramg is always saturated. Doing so
causes no loss of generality: #-expansion can be applied to obtain the
desired form. We define the translation (- |} from terms typed in S}, to
terms of S” as follows.

4This restriction rules out (non-trivial) reflective systems.

5. INTERNALISATION 43

Definition 15 (Compilation of param).

(sh

{x) =x
(lparamp F Ao ... A;) = [F] Ao..
{(c:A) = B) = (x:4) = (XR [A]x...x) =5 (B)
(Nx: A. b)) = X%: A. Aoxg:[A] x...x. (b))
(F eoa) = (FD eua o1, [a] 0
{(x:A) = B) = (x:{A}) = (B)
(A% AL Bl) = A%%: (AD. (b)
(F ewa) = (F) ex{a)) 0
(T, x:A) = (T|),x: A, xg: [A] x...x ifT’'FA:s
(T,x:A) = (T]),x: (A) ifTHA:[s]

Lemma 16. Assumings € S, then

1. if I' Fgr B : s, then param cannot appear in B and

2. if ' gr A @ B, then param cannot appear in A.

Proof. The proof is done by simultaneous induction on the typing deriva-
tions.

e In the base case, a constant cannot be param, because its type has a
sort of form [s], which is distinct from s, by assumption 1 in Defini-
tion 14.

e In the induction cases, we take advantage of restriction 2 in Defi-
nition 14 to ensure that subterms also satisfy the conditions of the
lemma.

Theorem 17. All occurrences of param are removed by (| - |).
Proof. The proof is done by induction on terms.

e The base case (paramp) removes occurrences.

e No other occurrences are introduced. In particular, in the line marked
with an asterisk (); the argument of sort [s| (which may contain
param) is not duplicated. In line marked (), the term a cannot con-
tain any occurrence of param, as shown by Lemma 16.

O

44 Proofs for Free - Parametricity for Dependent Types

Theorem 18 (soundness). (- |) translates valid judgements in S}, to valid judge-
ments in S'.

[hg A:B = (T) Fsr (A) - (B)

Proof sketch. The proof proceeds by induction on the typing derivation. [

6 Applications

Sections 3 and 4 contain simple applications of our setting. More applica-
tions of parametricity on programs expressible in System F are shown in
Paper III. In this section we see how elaborate constructions can be han-
dled. All examples of this section fit within the system I, augmented with
inductive definitions.

6.1 A library for applications

Applying [-] by hand to non-trivial examples can be tedious. The reader
eager to experiment is suggested to use computer aids. One possible tool
is that of Bohme (2007) which computes the relational interpretation of
any Haskell type. Unfortunately, the above tool has not been extended
to support dependent types. To generate the examples for this paper, we
have used an Agda library (Bernardy, 2010) instead. An advantage of the
library approach is that one can use a single framework to write programs
and reason using free theorems about them.

6.2 Proof irrelevance and parametricity

In this section we show that any two proofs of a given proposition can be
treated as related. In a predicative system with inductive families, such as
Agda, there are at least two ways to represent propositions. A common
choice is to use x for the sort of propositions, as we suggest in Section 2.1.
One issue is then that quantification over types in * is in %1, hence not a
proposition. The issue can be side-stepped by encoding propositions in
a universe like the following Prop, where quantification using 7t yields a
proposition in the Prop universe.

data Prop : x; where
top : Prop
bot : Prop
__ : Prop — Prop — Prop
T :(A:%x)— (f: A— Prop) — Prop

6. APPLICATIONS 45

One can then construct proposition objects, for example a usual ordering
between naturals

<:IN— N — Prop
zer <n = top
sucm<zer = bot
sucm<sucn = m<n

or the predicate that n is the biggest natural:

supremum : IN — Prop
supremumn = TIN (Am — m <n)

The intention is for propositions to be interpreted as the set of their proofs.
The following function realises this interpretation in the standard way:
truth is interpreted as a singleton type, falsity as an empty type, intersec-
tion of propositions as a pair of proofs, and quantification as a product.

Proof : Prop — %

Proof top =

Proof bot =

Proof (ab) = Proofa Proofb
Proof (T Af) = (a: A) — Proof (fa)

However, to enable changing the parametricity translation of proofs, we
will instead just postulate an abstract Proof : Prop — x and a few con-
stants, chosen so that proofs (terms of type Proof p for some p : Prop) only
can interact in limited ways with programs (a : A : x). We allow standard
proof constructions: introduction (abs) and elimination (app) of 7, intro-
duction (pair) and elimination (proj,proj) of and introduction (obvious) of
top. Additionally, given any proof of falsity, a program of an arbitrary type
can be constructed (using botElim). By seeing the arguments as premisses
and the results as conclusions, one recognizes the standard inference rules
in the types of these constants.

app: (A:x) = (f: A— Prop) — Proof (mAf) — (a: A) — Proof (fa)
abs: (A:x) — (f: A— Prop) — ((a: A) — Proof (fa)) — Proof (tAf)
proj : (a b Prop) — Proof (a b) — Proof a

proj : (ab : Prop) — Proof (a b) — Proofb

pair : (ab : Prop) — Proof a — Proof b — Proof (a b)

obvious : Proof top

botElim : Proof bot — (A : %) — A

A consequence of restricting oneself to an abstract representation of proofs
is that the structure of proofs is irrelevant in the meaning of programs.
The reason is that programs cannot assume that the structure of a proof
corresponds that of the proposition being examined in any way.

46 Proofs for Free - Parametricity for Dependent Types

Note that programs could depend on the structure of proofs if we were to
use the definition of Proof given above, and that in that case, our relational
interpretation would translate proofs to witnesses that these are related.
For example, given the type of a lookup function in a list bound by length

lk:{A:x} — (n:IN) — (xs: ListA) — Proof (n < lenxs) — A

one gets the following relation, which carries an assumption pgr requiring
the proofs p; and p, to be related. That assumption would have a compli-
cated formulation if we had taken the standard interpretation of the set of
proofs.

[[|kﬂ : {Al Ay *} (AR T Aq —)Az—)*)
{nyn2 :IN} (ng : [Nat[nq ny)
{xs1 : List Ay } {xsy : List Ay } (xsg : JList[Ar xs1 xs7)
{p1 : Proof (n; < lenxsy)}
{p2 : Proof (ny < lenxsy) }
(pr : [Proof] [n < lenxs] p1 p2) —
AR (lknyxsy p1) (Iknyxsy py)

However, by axiomatising Proof, we can pick any translation [Proof] which
also satisfies the other axioms. In fact, we can assert that all proofs are
related:

JProof] : Jproposition — %[Proof Proof
[Proof[—xq x» =

The assumptions requiring proofs to be related then reduce to ; effectively
disappearing (because values of singleton types like can always be in-
ferred).

For the above overriding to be sound, one needs to provide a translation
of app, abs, proj, proj, pair, obvious and botElim respecting the parametricity
condition. All but the last are easy to translate: their results are Proofs, so
the result type of their translation is . Hence, constant functions returning
tt do the job. Translating botElim can seem more tricky: because it has a
proof as argument, the assertion that all proofs are related makes [botElim[
potentially more difficult to write, as it has one less assumption to work
with. However, because botElim already has a proof of falsity as an ar-
gument, its translation has two of them. Hence, one can prove anything
JbotElim[by using them, making the relational witness superfluous.

JbotElim[: (by : Proof bot) — (by : Proof bot) — —
[(A:%) — A] (botElimby) (botElim by)
[botElim[by by = botElim by ([(A : %) — A] (botElim by) (botElim by))

In summary, assuming proof-irrelevance, proof arguments do not strengthen
parametricity conditions in useful ways. One often (but not always) does
not care about the actual proof of a proposition, but merely that it exists.
In that case, knowing that two proofs are related adds no information.

6. APPLICATIONS 47

6.3 Type classes

What if a function is not parametrised over all types, but only types equipped
with decidable equality? One way to model this difference in a pure type
system is to add an extra parameter to capture the extra constraint. For ex-
ample, a function nub : Nub removing duplicates from a list may be given
the following type:

Nub = (A:x) — EqA — ListA — ListA

The equality requirement itself may be modelled as a mere comparison
function: EQA = A — A — Bool. In that case, the parametricity state-
ment is amended with an extra requirement on the relation between types,
which expresses that eq; and eq, must respect the A relation. Formally:

[[EqA]] eq eqp; = {31 : Al} — {az : Az} — AR31 ap —
{bl ZAl} — {bz ZAz} — AR by by —
[Bool] (eqq a1 by) (eqp az by)
[Nub]nyny =
{A1 Ap *} — (AR : [[*]] Aq Az) —
{ea; : EqA1} — {eqp : EqA2} — [EqA]eq eq, —
{xsy : ListA; } — {xsp : List Ay } — [List A] xs;xsp —
JList] Ag (n1 A1 eqq xsq) (np Az eqp xs)

So far, this is just confirming the informal description in Wadler (1989). But
with access to full dependent types, one might wonder: what if we model
equality more precisely, for example by requiring eq to be reflexive?

Eq’A = (eq: A — A — Bool) Refleq
Refleq = (x:A) — eqxx =true

In the case of Eq’, the parametricity condition does not become more ex-
citing. It merely requires the proofs of reflexivity at A;, A, to be related.
This extra condition adds nothing new, as seen in Section 6.2.

The observations drawn from this simple example can be generalised:
type-classes may be encoded as their dictionary of methods (Wadler and
Blott, 1989), ignoring their laws. Indeed, even if a type class has associated
laws, they have little impact on the parametricity results.

6.4 Constructor classes

Having seen how to apply our framework both to type constructors and
type classes, we now apply it to types quantified over a type constructor,
with constraints.

48 Proofs for Free - Parametricity for Dependent Types

Voigtlander (2009b) provides many such examples, using the Monad con-
structor class. They fit well in our framework, but here we show the sim-
pler example of Functors, which already captures the essence of constructor
classes.

Functor : x;
Functor = (F: % = %) ((XY:x) > (X—=Y)—=FX—=FY)

Our translation readily applies to the above definition, and yields the fol-
lowing relation between functors:

[Functor] : Functor — Functor — %
[Functor] (F1, mapy) (F2, map,)
= (FR : {A1 Az : *} — (AR : A1—>A2—>*) — (FlAl — FzAz —>*))
({X1Xg:x} = (Xg: Xy =Xy = %) —

{Ylei*}—> (YR2Y1—>Y2—>*) —
{fl ZXl %Yl} — {fz : X2*>Y2} —
({x1: X1} = {x2: Xa} = Xpxix2 = YR (fix1) (fax2)) —
{y1:FiX1} = {y2: F2 X2} = (YR : FRXRY1Y2) =
FrR YR (map; fry1) (mapy fay2))

In words, the translation of a functor is the product of a relation trans-
former (FR) between functors F; and F;, and a witness that map; and map,
preserve relations.

Such Functors can be used to define a generic fold operation, which typi-
cally takes the following form:

data y ((F, map) : Functor) : x where

In:F(u(F, map)) = u (F, map)
fold : ((F, map) : Functor) — (A: %) = (FA = A) — u (F,map) — A
fold (F, map) A¢ (Ind) = ¢ (map (u (F, map)) A (fold (F, map) A¢)d)

Note that the i datatype is not strictly positive, so its use would be prohib-
ited in many dependently-typed languages to avoid inconsistency. How-
ever, if one restricts oneself to well-behaved functors (yielding strictly pos-
itive types), then consistency is restored both in the source and target sys-
tems, and the parametricity condition derived for fold is valid. One way to
implement this restriction is to use containers, as defined by Morris and
Altenkirch (2009).

One can see from the type of fold that it behaves uniformly over (F, map)
as well as over A. By applying [-] to fold and its type, this observation
can be expressed (and justified) formally and used to reason about fold.
Further, every function defined using fold, and in general any function
parametrised over any functor enjoys the same kind of property.

Gibbons and Paterson (2009) previously made a similar observation in a
categorical setting, showing that fold is a natural transformation between

6. APPLICATIONS 49

higher-order functors. Their argument heavily relies on categorical se-
mantics and the universal property of fold, while our type-theoretical ar-
gument uses the type of fold as a starting point and directly obtains a
parametricity property. However some additional work is required to ob-
tain the equivalent property using natural transformations and horizontal
compositions from the parametricity property.

6.5 Type equality

Equality between types A and B can be expressed by the following rela-
tion, named after Leibniz, which asserts that any proof involving A can be
converted to a proof involving B.

Equal : ¥ — x — %1
EqualAB = (P:x — %) > PA—PB

An intuitive reading of the type of Equal suggests that inhabitants of that
type can only be polymorphic identity functions. Indeed, conversions from
PA to PB, for an arbitrary P, cannot depend on the actual values. We
would like to apply the axiom of parametricity to recover a formal proof
of that result.

Before doing so, we will do a practice round on the similar, but simpler
problem of showing that functions of type Id must be (extensionally) the
identity function.

Id=(A:x) > A=A

Using parametricity with arity n = 1, and taking advantage of the axiom
schema introduced in Section 5, we have:

paramiq : (f: 1d) —
{A:Set} (AR : A— Set)
{x:A} = (xg : ARx) =
AR (fAX)

Then we can instantiate Ag with the predicate of “being equal to x, the in-
put of f”; and its proof xg with reflexivity of equality to obtain the desired
result.

theorem : (f: 1d) — (A:x) = (x: A) = x=fAx
theoremf Ax = paramqf (_ = _ x) refl

The proof of our original proposition follows the same pattern, with a
single complication. Because Equal AB is an open term, our parametricity
axiom cannot be applied to it directly. There is a simple trick that allows
us to proceed though: bind the variables in a dependent pair and apply
the axiom to that type. Parametricity then gives us:

50 Proofs for Free - Parametricity for Dependent Types

SomeEqual = (A: %) (B:%) EqualAB
paramsomeEqual © (5 : SomeEqual) — JSomeEqual['s

where

JEqual[{A} AR {B}Br = A(e: EqualAB) —
{P:x— %} = (Pr:{X:Set} — (X— Set) - P X — Set)
{pZPA}—>PRARX1—>
PrBr(efp)
JSomeEqual[(A,B,e) =
(ARiA—>*1)
(BR:B%*l)
(JEqual[Ag Bre)

Using this instantiation of the parametricity axiom, we can proceed as in
the Id case, with three differences.

e The instantiation of the predicate constructor P takes an extra argu-
ment p, which we ignore.

e Because the input and output type are syntactically different, we use
heterogeneous equality (__), which is similar to _ = _, but relates
values of different types.

e We ignore the predicates Ar and Br constructed by param. in the
record of type |SomeEquall.

theorem : V(AB : %) — (e: EqualAB) — (P:x — %) (x: PA) = x ePx
theoremABePx = q
where (*/*/ CI) = (paramSomeEqual (A/ B/e) {P} Ap— ((—) X)) refl)

Some points are worth emphasising:

e It is possible to get a result about an open term, even though our
axiom only handles closed terms. Still, we get a concrete result (the
above theorem) that does not involve any occurrence of the para-
metricity axiom. This happens because the function constructing
predicates (Ap — ((__) x)) precisely discards those occurrences.

e The result is already exposed by Vytiniotis and Weirich (2010), but it
is remarkable that its proof is one line long given our framework.

e Because the equality __ is heterogeneous, deriving a substitution
principle from it requires Streicher’s Axiom K (Hofmann and Stre-
icher, 1996).

In consequence, it seems that one cannot derive that all proofs of
equality are equal from the axiom of parametricity.

7. DISCUSSION 51
7 Discussion

7.1 Related work

Studies of parametricity for System F and its variants abound in the liter-
ature, starting with the seminal paper of Reynolds, 1983, where the poly-
morphic semantics of System Ftypes is captured in a suitable model.

We use here a more syntactic approach, where the expressions of the
programming language are (syntactically) translated to formulas describ-
ing the program. This style was pioneered by Mairson (1991) and used
by a number of authors, including Abadi, Cardelli, and Curien (1993),
Plotkin and Abadi (1993), and Wadler (2007). In particular, Wadler gives
an insightful presentation of the abstraction theorem, as the inverse of Gi-
rard’s Representation theorem (Girard, 1972): Reynolds gives an embed-
ding from System F to second order logic, while Girard gives the corre-
sponding projection. Our version of the abstraction theorem differs in the
following aspects from that of Wadler (and to our knowledge all others):

1. Instead of targeting a logic, we target its propositions-as-types inter-
pretation, expressed in a PTS.

2. We abstract from the details of the systems, generalising to a class of
PTSs.

3. We add that the translation function used to interpret types as rela-
tions can also be used to interpret terms as witnesses of those rela-
tions. In short, the [A] partof T+ A: B = [I]+ [A]:[B] Ais
new. This additional insight depends heavily on using the interpre-
tation of propositions as types.

The question of how Girard’s projection generalises to arbitrary PTSs nat-
urally arises, and is addressed by Bernardy and Lasson (2011).

One direction of research is concerned with parametricity in extensions of
System F. Our work is directly inspired by Vytiniotis and Weirich (2010),
which extend parametricity to (an extension of) Fw: indeed, Fw can be
seen as a PTS with one more product rule than System F.

Before that, Takeuti (2004) attempted to extend CC with parametricity.
Takeuti asserted parametricity at all types, in a similar way as we do here,
in fact extending similar axiom schemes for System F by Plotkin and Abadi
(1993). For each a:[0 and P:«, Takeuti defined a relational interpretation
(P) and a kind (|P:«|) such that (P): (P:«|). Then for each type T:*, he
postulated an axiom paramy: (Vx:T. (T) x x), conjecturing that such ax-
ioms did not make the system inconsistent. For closed terms P, Takeuti’s
translations (P) and (|P:al) resemble our [P] and [«] P respectively (with
n = 2), but the pattern is obscured by an error in the translation rule for

52 Proofs for Free - Parametricity for Dependent Types

the product [J ~ . His omission of a witness xg for the relationship be-
tween values x; and x, in the rules corresponding to the product x ~ [
appears to correspond to a computationally-irrelevant interpretation of «,
as we present in Section 6.2.

In previous work (Bernardy, Jansson, and Paterson, 2010) we have shown
that the relational interpretation can be generalised to PTSs. Here we ex-
tend the results in multiple ways:

e we have annotated the relational interpretation with colours, clari-
fying the role of each type of quantification, and showing how the
translation can take advantage of systems with implicit syntax (Sec-
tion 3);

e we have proven that our previous inductive relational interpretation
of inductive families is correct (Section 4.4);

e we show that part of the meta-theory of parametricity can be inter-
nalised into a PTS and that the theory remains consistent (for an
important class of systems) (Section 5);

e we have argued in detail why one can assume that two proofs of a
given proposition are always related (Section 6.2);

e we have shown on an example that the support of X types allows us
to get results for open types, even with an axiom schema restricted
to closed types (Section 6.5);

e we allow for the source and target system to be different.

Bernardy and Lasson (2011) have shown how to construct a logic for para-
metricity for an arbitrary source PTS (Definition 9) which is as consistent
as the source PTS.

Besides supporting more sorts and function spaces, an orthogonal exten-
sion of parametricity theory is to support impure features in the system.
For example, (Johann and Voigtldnder, 2006) studied how explicit strict-
ness modifies parametricity results. It is not obvious how to support such
extensions in our framework.

It also appears that the function [-] (for the unary case) has been discovered
independently by Monnier and Haguenauer (2010), for a very different
purpose. They use [-] as a compilation function from CC to a language
with singleton types as the sole way to express dependencies from values
to types. Their goal is to enforce phase-distinction between compile-time
and run-time. Type preservation of the translation scheme is the main
formal property presented by Monnier and Haguenauer. We remark that
this property is a specialisation of our abstraction theorem for CC. Another
lesson learnt from this parallel is that the unary [-] generates singleton

types.

7. DISCUSSION 53

7.2 Future work

Our explanation of parametricity for dependent types has opened a whole
range of interesting topics for future work.

We should investigate whether our framework can be applied (and ex-
tended if need be) to more exotic systems, for example those incorporating
strictness annotations (seq) or non-termination.

We gave an interpretation of the axiom of parametricity as a compilation
pass to a language not requiring the axiom. It would also be interesting to,
instead, extend the B-reduction rules to support the axiom.

The target PTS that we constructed has typed individuals, whereas many
logics for parametricity have untyped individuals. Girard’s representation
theorem shows that, in System F, such type information can be recovered
and is therefore not essential. It would be worthwhile to generalise that
result to arbitrary PTSs.

We presented only simple examples. Applying the results to more sub-
stantial applications should be done as well. In particular, we hope that
our results open the door to a more streamlined way of getting free the-
orems for domain-specific programming languages. One would proceed
along the following steps:

1. model the domain-specific languages within a dependently-typed
language;

2. use [-] to obtain parametricity properties of any function of interest;
3. prove domain-specific theorems, using parametricity properties.

We think that the above process is an economical way to work with para-
metricity for extended type systems. Indeed, developing languages with
exotic type systems as an embedding in a dependently-typed language is
increasingly popular (Oury and Swierstra, 2008), and that is the first step
in the above process. By providing an automatic second step, we hope
to spare language designers the effort to adapt Reynolds’ abstraction the-
orem for new type systems in an ad-hoc way. Indeed, Pouillard (2011)
has derived correctness properties of a library for names and binders, by
following our method.

Acknowledgements Thanks to Andreas Abel, Thierry Coquand, Nils
Anders Danielsson, Peter Dybjer, Marc Lasson, Guilhem Moulin, Ulf Norell,
Nicolas Pouillard, Janis Voigtldnder, Stephanie Weirich and anonymous re-
viewers for providing us with very valuable feedback.

Proofs for Free - Parametricity for Dependent Types

54

[T A:B] — [T [4] : [B] 4|

axiom Fs:s F (A5 x— [5]) 15— [¢]
start I'+A:s ET:\QNNIVﬁL
Ix:AFx: A [T],x: A, xg : [A] X F xg : [A] X
'-A:B [C1+ [A]: [B] A
. I-C:s [T]+[C]:C — [s]
weakening — —
I'x:CHA:B [T],x:C,xg : [C] xF [A] : [B] A
THA:s [T]F [A]: A= [s1]
I[,x:AF B:s [T, x:A,xr : [A] X+ [B] : B — [s2]
product —
T+ (Vx:A. B) : s3 [T (Af:(Vkx: A. B). Vhixi A, Verxg : [A] % [B] (Fx)) : (VFx: A. B) — [s3]
'+ F: (Vkx:A. B) [T] F [F] : (Vkix: A. Verxg : [A] %. [B] (F exx))
- T'a:A [T+ [a] : [A] @
application
T FerA: Blx+ a] [T] = [F] ox,a e, [a] : [Blx — a]] (F exa)
H,TN»NmH _TJ:_I_”T»__N‘V_WH._
I[,x:AF B:s [T, x: A, xg : [Al X+ [B] : B — [s2]
abstraction I''xtAFb:B [T],x:A,xg : [A] X F [b] : [B] b
T (Mx:A. b) : (Vkx: A. B) [T] F (Abix: A, Mrxg : [A] %. [B]) : (VNix:A. Vorxg : [A] %. [B] b)
'-A:B [T)+ [A] : [B] A
I'B:s [T]+ [B]:B — [s]
conversion B B B' [B] B =m\= —
T-A:B [C]F [A]: [B] A

Figure 1.3: Outline of a proof of Theorem 8 by induction over the derivation of I' = A : B.

A. PROOF OF THE ABSTRACTION THEOREM 55
A Proof of the abstraction theorem

In this appendix we sketch the proof of our main theorem, using the fol-
lowing lemmas:

Lemma 19 (translation preserves S-reduction).
A—p A = [A] —; [A]

Proof sketch. The proof proceeds by induction on the derivation of A —>E

A’. The interesting case is where the term A is a f-redex (Ax: B. C) b. That
case relies on the way [-] interacts with substitution:

[bx = CI] = [P][x = C][xg = [CI]
The remaining cases are congruences. O

Lemma 20 ([s] is well-typed). For each sort s € S we have t-= [s] : 5 — [s]’ in
s

Proof. From the requirements for a sort s € S in Definition 9 we can infer
(in ")

Theorem 21 (abstraction). If the PTS S” reflects S,

ThsA:B = [[]Fs [A]:[B] A

Proof sketch. A derivation of [I] - [A] : [B] A in S” is constructed by in-
duction on the derivation of I' = A : B in S, using the syntactic properties
of PTSs. We have one case for each typing rule: each type rule translates
to a portion of a corresponding relational typing judgement, as shown in
Figure 1.3.

For concision, the proof sketch uses a variant form of the abstraction rule;
equivalence of the two systems follows from Barendregt (1992, Lemma
5.2.13). The conversion case uses Lemma 19. O

Proof details. The following propositions are proved by simultaneous in-
duction on the typing judgement:

56 Proofs for Free - Parametricity for Dependent Types

lem TFg A:s = [kg A:S.

Proved by the thinning lemma (Barendregt, 1992, Lemma 5.2.12, p.
220). For each A;, erase from the context [I'] the relational variables
and j-indexed variables such that j # i. The legality of the context is
ensured by ind.

ind TFs A: B = [ks [A]: [B] A.
The proof proceeds by induction on the derivation of I' - A : B. We
have one case for each typing rule: each type rule translates to a por-
tion of a corresponding relational typing judgement; and we detail
them in the rest of the section. The construction of the derivation
makes use of the propositions lem, ind and ind’ (on smaller judge-
ments).

ind TksB:s = [[]Fg [B]:B— [s]
Corollary of ind.

A. PROOF OF THE ABSTRACTION THEOREM 57

We proceed with the case analysis for the proof of ind.

axiom ¢ : s If ¢ is not a sort, the proposition is assumed as an hypothesis.
For the remaining case s : t we have

Lemma 20
ELemmazo E At x— [t])f— [t] Fs:t app
Fs]:5—[s] F(AXE X — [H])5: [t]

FIsl: AEx— [()5

start
tind’ ‘lem ‘lem
[[I-A]: A—[s] [TTFAics [TFA:s
[T],x:AF [A]: A — [s] [T],x:AF x; : A ;pp
[TLxAF[AIR:[s]
[T], x: A, xR : [A] X F xg : [A] %
weakening
ind’ ‘lem ‘lem
‘ind ‘lem [C]F[C]:C—[s] [T]FGC;i:s . [FGi:s
[FIAI:[B]A [[]FCy:s [TLxCH[C]:C— 5] ") xCF x,.:c,.:
TLxCr[A]:[B]A [x:CF[CIx: [s] PP

[Tl.x:Cxr:[CIX - [A] : [B] A

product (k,s1,52,53)

tind’ lem ‘lem
M IA]: A= [si] [TTIF Aicsy o [TTF Aics:
(1) [Tl AF [A]: A — [s1] [TLXAF xi : A; ‘lem
[Tl x:A F [A]R: [s1] s [T] - (v*x:A. B); : s3

IFLF- (P A B - [ALx: [o1] e

58 Proofs for Free - Parametricity for Dependent Types

‘lem ‘lem ‘lem
[T+ (¥x:A. B); : s . @ [r)F A;isy [TTF (Vx:A. B); : 53
[T],f: (v*x: A. B) I f; : (V¥x: A. B); [T]f:(Vkx:A. B) - A; @ 51
[T, f: (V*x: A. B),x: A F f; : (Vkx: A. B),

wk

wk

H(2)
[T],f: (Vx:A. B) F A; : 51
CLF (P A B AR x: Ar
[[r]],m,ﬁ F (ferx); : B;

app

H(1)
[T], f: (¥*x: A. B),x: A F [A]%: [s1]
[T],:(Fx: A B), A, xg: [A]X - (f o), : By

wk

tind’ ‘lem
[T],x:A,xg:[A]XF [B] : B — [s2] [I]F (V*x:A. B); : s3
[T],f: (¥kx: A. B),x: A,xg:[A]X F [B] : B — [s2]
[T], f: (Vkx: A. B),x: A,xg:[A] X F [B] (f &xx) : [s2]

wk (2)

(1) wk (1)
[T, f: (Vkx: A. B),x: A F [A]X: [s1]
[T], f: (V*x: A. B),x: A F (Vorxg: [A]%. [B] (f exx)) : [s3]

(kr,[s11,[52],[531)

‘lem ‘lem
[TIF A;:sy [T]F (V*x:A. B); :s3
[T],f:(Vkx:A. B) - A; : 51
[T], f: (Fx: AL B) b (Fix: A, Virxg: [A]%. [B] (Forx)) : [53]

wk

kl
51~ [s3]

‘lem
[T] - (V*x:A. B);:s3 [T]F [s3]: [ts]
[T+ (V*x: A. B) = [s3] : [t3]
[T] F (Af:(VRx: A. B). Vkix: A. Vorxg : [A]%. [B] (f xx)) : (VFx: A. B) — [s3]

s3~ [t3]

abs

[T+ s3:t3 N [TIF s3] :[ts] [[]Fs3:ts i
[T], %755 = xi : 53 [(lxs5 - [ss]: ts] () [Fsazts [ITF Tts] : [us]
[I],xt55 = X — [s3] : [#5] 1+ 55— [ts] : [us]
[I1F (AX7s3. X = [s3]) : 53 — [t3]

lem
[T]F (V*x:A. B); : s3 app
[T] F (Axzs3. X — [s3]) (Vkx: A. B) : [t3]
[T]F (Af:(VEx: A. B). Vhix: A, Vhrxg : [A] % [B] (f exx)) : (AX83. X — [s3]) (Vkx: A. B)

conv

application

ty~ [z

A. PROOF OF THE ABSTRACTION THEOREM 59

‘ind
[T] F [F] : (Af:(VEx: A. B). Vrix: A. Vorxg: [A] %. [B] (ferx)) F

tind’ ‘lem
(1) [I-[A]: A — [sa] [T]Fa: A ‘lem
['] - [A]a: [s4] Y A

[T, x:AF [Ala: [sa]

‘lem ‘lem ‘lem
[Tl F F: (V*x:A. B); [T]F A;:s4 . [T+ A;:sa
[Tl x:AF F : (V*x: A. B); [Tlx:AF x;: A;
app

[T, x:A+ (Fex); : B;

find’ ‘lem
[T+ [Bl:B — [sg] [Tk Aj:sa i
[[F]],x:AL[[Bﬂ :B ﬂ . . 1(1)
[T],x: A+ [B] (Fexx) : [sg] [Tl x:AF [A]a@: [sa] .
‘lem - [T],x:A,xg:[A] @ & [B] (F exx) : [s5] fea 2 fop]
[TIF A;:sa [C],x:A F (Vrxg:[A] @ [B] (Fex)) : [sg] &

sa~>[sp]

[T] F (Vrix:A. Vorxg:[A]a. [B] (Fexx)) : [s]
[T] - [F] : (Vhix:A. Verxg:[A] @ [B] (F exx))

conv

‘lem
[C]F a;: A “ind

[T+ [Flexa: (Foxg:[Al7 Bl a) Fo@) [T]- [a] : [Ala o

[T+ [F] ox,a o, [a] : [B)[x—a][xr — [a]] (F o)

abstraction We apply the generation lemma (Barendregt, 1992, Theorem
5.2.13, case 3) on T - (Vx: A. B) : 5. We get: ds4 ~ sp such that

OF"AISA
e I',x:AF B:sp
052‘553

Since sorts are irreducible, the last equation becomes s = sp, so we have:
ds4 ~ s such that

OF"A:SA
e I'x:AFB:s

Induction on the judgements constructed above is valid, because the gen-
eration lemma generates smaller judgements. It yields:

60 Proofs for Free - Parametricity for Dependent Types

o [T+ [A]:[sa] A
o [I],x:A,xg : [A] X+ [B] : [s] B

and these judgements will be used in the construction of the target deriva-
tion.

First we show that the type is properly sorted:

‘lem
[T]F (V*x:A. B); : s . ")
—_————————— Si —_——
[T],f: (V*x:A. B) F f;: (V*x: A. B); [T, f:(V*x:A. B) - A;:s4 ;
[T],f:(¥*x: A. B),x: A F f; : (V*x: A. B);

k

(4)
[T],f:(Vkx:A. B) - A; :sa .
[T]f:(Vkx: A. B),x: A F x; : A;
[T, f:(V*x: A. B),x: A b (f &), : B;

app

find’ ‘lem ‘lem ‘lem
[N [BI:B—[s] [MF (VA B):[s] WY [T F Arisa [T+ (FFx: A. B)iis
[T, f:(Vkx: A. B) - [B] : B — [s] [T],f:(Vkx:A. B) - A; :sa i

[T],f:(¥*x:A. B),x:AF [B] : B — [s] .
[T, F:(Vx: A. B),x: A - [B] (Forx) : [5] P

H(2)
[T],f:(Vkx: A. B),x: A F [A]%: [s4]

[T], f: (Vkx: A. B),x: A, xg:[A]X F [B] (f exx) : [5]

wk

(©)
(1) ‘lem
@) [[],x:AF [A]%: [s4] [[]F (Vx:A. B), :s
[T, f:(Vkx: A. B),x: A+ [A]X: [s4]
[T], f: (Vx: A. B),x: A b (Vrxg:[A]%. [B] (ferx)) : [s]

wk (1)

fsal % [s]

:lem :lem
[T1F A;j:sq [T]F (V*x:A. B);:s .
[T, f:(Vkx:A. B) - A;:sa 1 .
[T],f: (Vkx: A. B) - (Vhix: A. Verxg: [A]%. [B] (fexx)) : [s]
‘lem
‘lem [T1F [s]:[t] [T1F (x:A.B);:s i
[T] F (V*x:A. B); : s [T],f:(Vkx: A. B) F [s] : [t] o]

[T]+ (Vf:(Vkx: A. B). [s]) : [t] b

[T] F (Af:(Vkx: A. B). Ykix: A. Vorxg: [A] % [B] (f exx)) : (VF:(VEx: A. B). [s])

lem
[T]F (¥x:A. b); : (V*x: A. B); .
[T]F (AF: (W A. B). Vo A. Vorsg: [A]%. [B] (Fop) Vi A b) : [s]

A. PROOF OF THE ABSTRACTION THEOREM 61

Then use this in the top-level tree:

tind’ ‘lem
[T]+ [B] : B — [s] [[T]])—bi:Bia ‘lem
[T]+ [B]b: [s] [C] - Aizsa (1)
[T],x:AF [B]b: [s] [T],x:AF [A]R: [s4] e
[T],x: A, xg:[A]XF [B]D: [s]
(3)
tind’ ‘lem lem
() MIE A1 A = [sa] [TTFAizsa , ITDF Aizsa
[Tl x:AF [A]: A — [s4] [ThLx:AF x;: Ay app
[], x:A - [AJX: [54] _ fsal45 151
[Tl x:AF (Vorxg:[A]% [B]D) : [s]
‘ind ‘lem
[C]F 6] : [B]b [T]F A;:sa " {(1)
[T],x:A+ [b] : [B] b [T],x: A [A]R: [s4] .
[T],x: A, xg:[A] X+ [b] : [B] b b
[T],x: A F (Arxg:[A] . [b]) : (Vorxg:[A]%. [B]b)
‘lem 3(3)
[T+ Ai:sa [T, x:AF (Voxg:[A]% [B] D) : [s] SA“kL’(SW
1] F (Vkix: A. Vorxg:[A] % [B] D) : [s] b
[T] F (Wix: A, Mrxg:[A]%. [B]) : (VRix: A. Vorxg:[A]%. [B] b)
——— (5) —_— app
[T] F (Af:(VEx: A. B). Vkix: A. Vorxg: [A] % [B] (f exx)) (Afx: A. b) : [s]
[T F (R A, Xrsq: [A]R. [b]) : (AF: (W A, B). Vhix: A. Vorsg: [A]% [B] (For)) i A)
conversion
‘ind’ lem
“ind [T+ [B) : B — [s] [T+ A;:B;
[T1+[A]: [B] A CFBra(sl_

[TTF [A] - [B] A

The p-equality constraint ([B] A =g [B'] A) holds because [-] preserves
B-equivalence (Lemma 19). O

62

Proofs for Free - Parametricity for Dependent Types

Paper 11

Realizability and Parametricity
in Pure Type Systems

The following paper is an extended version of a paper with the same title
appearing in the proceedings of FoSSaCS 2011.

63

Realizability and Parametricity
in Pure Type Systems

Jean-Philippe Bernardy Marc Lasson

Abstract

We describe a systematic method to build a logic from any program-
ming language described as a Pure Type System (PTS). The formulas
of this logic express properties about programs. We define a para-
metricity theory about programs and a realizability theory for the
logic. The logic is expressive enough to internalize both theories.
Thanks to the PTS setting, we abstract most idiosyncrasies specific
to particular type theories. This confers generality to the results, and
reveals parallels between parametricity and realizability.

1 Introduction

During the past decades, a recurring goal among logicians was to give a
computational interpretation of the reasoning behind mathematical proofs.
In this paper we adopt the converse approach: we give a systematic way
to build a logic from a programming language. The structure of the pro-
gramming language is replicated at the level of the logic: the expressive
power of the logic (e.g. the ability of expressing conjunctions) is directly
conditioned by the constructions available in the programming language
(e.g. presence of products).

We use the framework of Pure Type Systems (PTS) to represent both the
starting programming language and the logic obtained by our construc-
tion. A PTS (Barendregt, 1992; Berardi, 1989) is a generalized A-calculus
where the syntax for terms and types are unified. Many systems can
be expressed as PTSs, including the simply typed A-calculus, Girard and
Reynolds’ polymorphic A-calculus (System F) and its extension System Few,
Coquand’s Calculus of Constructions, as well as some exotic, and even in-
consistent systems such as AU (Girard, 1972). PTSs can model the func-
tional core of many modern programming languages (Haskell, Objective
Caml) and proof assistants (CoQ (team, 2010), Agda (Norell, 2007), Epi-
gram (McBride and McKinna, 2004)). This unified framework provides
meta-theoretic results such as substitution lemmas, subject reduction and
uniqueness of types.

In Section 3, we describe a transformation which maps any PTS P to a
PTS P2. The starting PTS P will be viewed as a programming language in
which live types and programs and P? will be viewed as a proof system in
which live proofs and formulas. The logic P? is expressive enough to state

65

66 Realizability and Parametricity in PTSs

properties about the programs. It is therefore a setting of choice to develop
a parametricity and a realizability theory.

Parametricity. Reynolds (1983) originally developed the theory of para-
metricity to capture the meaning of types of his polymorphic A-calculus
(equivalent to Girard’s System F). Each closed type can be interpreted
as a predicate that all its inhabitants satisfy. Reynolds” approach to para-
metricity has proven to be a successful tool: applications range from pro-
gram transformations to speeding up program testing (Wadler, 1989; Gill,
Launchbury, and Peyton Jones, 1993; Bernardy, Jansson, and Claessen,
2010).

Parametricity theory can be adapted to other A-calculi, and for each calcu-
lus, parametricity predicates are expressed in a corresponding logic. For
example, Abadi, Cardelli, and Curien (1993) remark that the simply-typed
lambda calculus corresponds to LCF (Robin Milner, 1972). For System F,
predicates can be expressed in second order predicate logic, in one vari-
ant or another (Abadi, Cardelli, and Curien, 1993; Mairson, 1991; Wadler,
2007). More recently, Bernardy, Jansson, and Paterson (2010) have shown
that parametricity conditions for a reflective PTS can be expressed in the
PTS itself.

Realizability. The notion of realizability was first introduced by Kleene
(1945) in his seminal paper. The idea of relating programs and formulas,
in order to study their constructive content, was then widely used in proof
theory. For example, it provides tools for proving that an axiom is not
derivable in a system (excluded middle in (Kleene, 1971; Troelstra, 1998))
or that intuitionistic systems satisfy the existence property® (Harrop, 1956;
Troelstra, 1998); see Van Oosten (2002) for a historical account of realizabil-
ity.

Originally, Kleene represented programs as integers in a theory of recur-
sive functions. Later, this technique has been extended to other notions of
programs like combinator algebra (Staples, 1973; Troelstra, 1998) or terms
of Godel’s System T (Kreisel, 1959; Troelstra, 1998) in Kreisel’s modified
realizability. In this article, we generalize the latter approach by using an
arbitrary pure type system as the language of programs.

Krivine (1997) and Leivant (1990) have used realizability to prove Girard’s
representation theorem? (Girard, 1972) and to build a general framework
for extracting programs from proofs in second-order logic (Krivine and
Parigot, 1990). In this paper, we extend Krivine’s methodology to lan-
guages with dependent types, like Paulin-Mohring (1989a) and Paulin-

MIf Vx.3y.¢(x,y) is a theorem, then there exists a program f such that Vx.¢(x, f(x)).
*Functions definable in System F are exactly those provably total in second-order arith-
metic.

2. THE FIRST LEVEL 67

Mohring (1989b) did with the realizability theory behind the program ex-
traction in the CoqQ proof assistant (team, 2010).

Contributions. Viewed as syntactical notions, realizability and parametric-
ity bear a lot of similarities. Our aim was to understand through the gen-
erality of PTSs how they are related. Our main contributions are:

e The general construction of a logic from the programming language
of its realizers with syntactic definitions of parametricity and realiz-
ability (Section 3).

e The proof that this construction is strongly normalizing if the starting
programming language is (Theorem 16).

e A characterization of both realizability in terms of parametricity (The-
orem 27) and parametricity in terms of realizability (Theorem 22).

2 The first level

In this section, we recall basic definitions and theorems about pure types
systems (PTSs). We refer the reader to (Barendregt, 1992) for a comprehen-
sive introduction to PTSs.3 A PTS is defined by a specification (S, 4, R)
where S is a set of sorts, A C SS a set of axioms and R C SSS a set of
rules, which determines the typing of product types. This specification
parameterizes both the syntax of term and the rules of the type system.

Definition 1 (Syntax of terms). A PTS is a type system over a A-calculus
with the following syntax:

T = S8 sort

| vV variable

| TT application

| AV:T.T abstraction

| V:T)—=>T product

The product (x : A) — B may be also written V(x : A).B, or A — B when
x does not occur free in B.

The rules of the typing judgement (written I' - A : B) of the PTS (S, A, R)
are given in Figure 2.2. The notation I' - A : B : C is a shorthand for
having bothT' A : Band I' - B : C simultaneously.

3Readers familiar with Paper I of the thesis might wish to skip this section, as it largely
overlaps with the corresponding section of Paper I. This present section adds the syntactic
notion of sort-annotation to the system, but colours (as introduced in Paper I) could also be
used for the same purpose.

68 Realizability and Parametricity in PTSs

— s1:sEeA 'EA:s r-A:B I'C:s
Fsiis Tx:AFx: A T,x:CF-A:B
AXIOM START WEAKENING
I'-F:((x:A)— B) I'ta:A
I't Fa:B[x+— a
APPLICATION
Ix:AFD:B I'((x:A)—B):s
't (Ax:A.b): ((x: A) — B)
ABSTRACTION
I'HA:s Ix:AFB:s '-A:B TI'B:s B=gBh
I't((x:A) = B):s3 THA:B
Propucr (s1,52,83) € R CONVERSION
Figure 2.1: Typing rules of the PTS (S, A, R)
— s1:s e A I'-A:s '-A:B I'-C:s
Fsiisy T,r:AFx:A T,x:CF A:B
AXI0M START WEAKENING
I'F:((x°:A) — B) I'a:A
I'k (Fa)s: B[x — 4]
APPLICATION
[,x1:AFDb:B I ((x1:A)—B):s
Ik (Ax51: A.b): ((x%1: A) — B)
ABSTRACTION
' A:s Ix:AFB:sy '-A:B I'B':s B=gh
I'E((x1:A) = B):s3 THA:B
PropuCT (51,52,53) € R CONVERSION

Figure 2.2: Typing rules PTS (S, A, R), with sort annotations.

2. THE FIRST LEVEL 69

Example 1 (System F). The PTS F has the following specification:
Sk = {*,0} A = {(x,0)} Re = {(x*%),(0O,%%)} .

It defines the A-calculus with polymorphic types known as system F (Gi-
rard, 1972). The rule (%, *,*) corresponds to the formation of arrow types
(usually written ¢ — 7) and the rule ([J, %, %) corresponds to quantification
over types (Va.T).

Even though we use F as a running example throughout the article to
illustrate our general definitions our results apply to any PTS.

Sort annotations. We sometimes decorate terms with sort annotations.
They function as a syntactic reminder of the first component of the rule
used to type a product. We divide the set of variables into disjoint infinite
subsets V = | [{Vs|s € S} and we write x° to indicate that a variable x be-
longs to Vs. We also annotate applications F a with the sort of the variable
of the product type of F. Using this notation, the product rule and the
application rule are written

't A:s [Lx*:AFB:s I'-F:((x*:A) — B) I'a:A
'+ ((x1:A)— B):s3 't (Fa)s: B[x 4]
PropuUCT (51,52,83) € R APPLICATION

Since sort annotations can always be recovered by using the type deriva-
tion, we do not write them in our examples.

Example 2 (System F terms). In System F, we adopt the following con-
vention: the letters x, y, z, ... range over V,, and «, B, 7, ... over
V. For instance, the identity program Id = A(a : x)(x : a).x is of type
Unit = Va : .« — «. The Church numeral 0 = A(a: %) (f : & — a)(x : a).x
has type N = Vo : x.(¢ — a«) — (0 — a) and the successor function on
Church numerals Succ = A(n: N)(a: %) (f & = a)(x:a).f (nafx)isa
program of type IN — IN.

In any PTS a term A is said to be strongly normalizing if there is no infinite
B-reducing sequence starting from A. And A is weakly normalizing if there
is a term A’ in normal form (i.e. such that there is no B such that A’— sB)
with A—>7§A’. A PTS is strongly normalizing (resp. weakly normalizing) if
all its valid terms are strongly normalizing (resp. weakly normalizing).

Normalization properties are useful for solving the following problems:

o Type checking problem: Given a context I' and two terms A and B, is
I'- A : B derivable ?

70 Realizability and Parametricity in PTSs

o Type synthesis problem: Given a context I and a term A, is there a term
BsuchthatI' - A:B?

Remark 2. In (weakly or strongly) normalizing PTSs, the type checking problem
and the type synthesis problem are decidable.

The uniqueness of types is a very convenient property enjoyed by most
interesting pure type systems.

Definition 3 (Singly sorted). A PTS (S, A, R) is singly sorted if
1. (s,9),(s,s) e A=s=7¢,
2. (s,8,9),(s,8,8) e R=s5=5¢"

Lemma 4 (Uniqueness of types for singly sorted PTSs). In a singly sorted
PTS we have,
I'HA:Band ' A: B implies B =g B.

Proof. See (Barendregt, 1992). O

3 The second level

In this section we describe a logic to reason about the programs and types
written in an arbitrary PTS P, as well as basic results concerning the consis-
tency of the logic. This logic is also a PTS, which we name P2. Because we
carry out most of our development in P2, judgments refer to that system
unless the symbol - is subscripted with the name of a specific system.

Definition 5 (second-level system). Given a PTS P = (S, A, R), we define
P2 = (8%, A2, R?) by

§? = S {[s]|s€S}

A2 = A {([s],[s]) | (s,5) € A}

R* = R A{([s],[s],[s1), (s [s],[s]) | (s,5,5) € R}
{(s,[s],[s1) | (s,5) € A}

Because we see P as a programming language and P2 as a logic for rea-
soning about programs in P, we adopt the following terminology and con-
ventions. We use the metasyntactic variables s,sq,s, to range over sorts
in S and t,t,ty, to range over sorts in S2. We call type a term inhabit-
ing a first-level sort in some context (we write I' = A : s for a type A),
programs are inhabitants of types (' = A : B : s for a program A of type
B), formulas denote inhabitants of a lifted sort (written I' - A : [s]) and
proofs are inhabitants of formulas (I' - A : B : [s]). We also say that types
and programs are first-level terms, and formulas and proofs are second-level
terms.

3. THE SECOND LEVEL 71

If s is a sort of P, then [s] is the sort of formulas expressing properties of
types of sort s. For each rule (s,s,s) in R, ([s], [s], [s]) lifts constructs of
the programming language at the level of the logic, and (s, [s], [s]) allows
to form the quantification of programs of sort s in formulas of sort [s].

For each axiom (s,s) in A, we add the rule (s, [s], [s]) in order to form the
type of predicates of sort [s| parameterized by programs of sort s.

Example 3. The PTS F? has the following specification:

S = { * 0, [*], [00] }
AR = | (% 0), ([*], [E1) }
Ri = { (oxx), (Ox%), ([« [*], [*]), ([O1, [«], [*])

(e 831, 101), Ge 51 1) (5, T, 1) 2

We extend our variable-naming convention to V[, and V| as follows: the
variables h, h, h, ... range over VM' and the variables X, Y, Z, ... range

over Vimy. The logic F? is a second-order logic with typed individuals
(Wadler (2007) gives another presentation of the same system). The sort
* is the type of types and the only inhabitant of [J, while [x] is the sort
of propositions. The sort [[J] is inhabited by the type of propositions
([*1]), the type of predicates (T — [%]), and in general the type of relations
(t = -+ = T — [*]). The product formation rules can be understood as
follows:

o ([x],[*], [*]) allows to build implication between formulas, written
P— Q4

o (%, [*], [x]) allows to quantify over individuals (as in Vx : 7.P).
e (O, [x], [*]) allows to quantify over types (as in Va : x.P).

e (x,[0],[0]) is used to build types of predicates depending on pro-
grams (as in V(x : 0).T — [%]).

e ([O],[*],[*]) allows to quantify over predicates (as in V(X : T —
[+1)-P).

In F?, truth can be encoded by = VX : [x].X — X and is proved by
Obvious = A(X : [*])(h : X).h. The formula x =r y = VX : 7 —
[*].X x — Xy defines the Leibniz equality at type 7. The term

Refl =A(a:*)(x:a)(X:a — [x])(h: Xx).h

is a proof of the reflexivity of equality V(a : x)(x : a).x =4 x. And the
induction principle over Church numerals is a formula

N=Ax: NVX:N — [x].(Vy : N.Xy — X (Succ y)) = X0 — Xx.

4In this example P and Q stand for formulas (terms of type [x]).

72 Realizability and Parametricity in PTSs

3.1 Structure of P?

Remark 6. P? contains two copies of P, one syntactically equal to P and one
where sorts have been renamed from s to [s|. The only rules where the two copies
interact are of the form (s, [s"], [s']). We call these rules interaction rules.

Programs (or types) can never refer to proofs (nor formulas). In other
words, a first-level term never contains a second-level term: it is typable in
P. Formally:

Theorem 7 (separation). Fors € S, ifT'= A : B :s (resp. T F B : s), then
there exists a sub-context I of T such that T' =p A : B :'s (resp. I' -p B : s).

Proof. By induction on the structure of terms, and relying on the genera-
tion lemma (Barendregt, 1992, p. 5.2.13) and on the form of the rules in
R?: assuming (t,t,t) € R>thent € S = (te Ste S)andt e S = (t €
SteS). O

Remark 8. If P is singly sorted, then so is P2.

Therefore if P is singly sorted, then type checking and type synthesis are
decidable in P2. We will see in Section 3.2 that the strong normalization of
P is also preserved by our construction.

Lifting. The major part of the paper is about transformations and rela-
tions between the first and the second level. The first and simplest trans-
formation lifts terms from the first level to the second level, by substituting
occurrences of a sort s by [s] everywhere (see Figure 2.3). The function is
defined only on first-level terms, and is extended to contexts in the obvi-
ous way. In addition to substituting sorts, lifting performs renaming of a
variable x in Vs to X in V.

Example 4. In F?, the lifting of inhabited types gives rise to logical tau-
tologies. For instance, [Unit]| = [Va : x.a — a] = VX : [x].X — X =, and
[N] =VX: [x].(X = X) = (X = X).

Lifting preserves both typing and S-reduction.

Lemma g (lifting preserves typing). T+ A:B:s= [['| F [A] : [B] : [s]

Proof. A consequence of P? containing a copy of P with every sort s re-
named to [s]. O

Lemma 10 (lifting preserves f-reduction). A—3B = [A]—[B]

Proof. By induction on the structure of A. O

3. THE SECOND LEVEL 73

ESU =i

L[s1] =s
[x] =% |Vx*: A.B|] =|B]
5] =[s] |Vxlsl - AB|=Vx°: |A].|B]
[(x:A) = B]=(2:[A]) — [B] |Ax*: A.B| =|B]
[Ax:A.b] =Ax:[A]. [b] |Ax[s1: AB|=A%": |A].|B]

[AB] =[A][B] [(AB)s] =[A]
-] — [(AB)s1] =LAl [B]
[T,x:A] =[T],x:[A] |-] —

IT,x°: A] =[T]

T, x[s1: A] =|T],%:|A]

Figure 2.3: lifting from P to P? and projection form P? to P.

Projection. We define a projection from second-level terms into first-level
terms, which maps second-level constructs into first-level constructs. The
first-level subterms are removed, as well as the interactions between the
first and second levels. The reader may worry that some variable bindings
are removed, potentially leaving some occurrences unbound in the body of
the transformed term. However, these variables are first level, and hence
their occurrences are removed too (by the application case).

The function is defined only on second-level terms, and behaves differently
when facing pure second level or interaction terms. In order to distinguish
these cases, the projection takes sort-annotated terms as input. Like the
lifting, the projection performs renaming of each variable x in V[, to & in
Vs. We postulate that this renaming cancels that of the lifting: we have
X =x.

Example 5 (projections in F?).
|| = Unit |Obvious| = Id |V(a:%)(x:a).x =4 x] = Unit
INt| =N
Lemma 11 (projection is the left inverse of lifting). |[[A]] = A
Proof. By induction on the structure of A. O
As lifting, projection preserves typing.

Lemma 12 (projection preserves typing). I' = A : B : [s] = |[T'] - |A] :
|B] :s

Proof. By induction on the derivationI' - A : B. O

74 Realizability and Parametricity in PTSs

In contrast to lifting, which keeps a term intact, projection may remove
parts of a term, in particular abstractions at the interaction level. Therefore,
B-reduction steps may be removed by projection.

Lemma 13 (projection preserves or removes S-reduction).
If A~ 4B, then either |A|—g|B| or [A| = |B].

3.2 Strong normalization

Armed with the basic tools of projection and lifting, we can already prove
that P? is as consistent as P.

Definition 14 (inconsistent sort). In any PTS Q, we say that a sort s is
inconsistent if for all B such that g B : s, there exists A such that-g A : B
(in other words, all inhabitants of the sort are inhabited).

Theorem 15. If a sort [s] is inconsistent, then s is inconsistent.

Proof. Assume B be such that - B : s. By Lemma 9 we have - [B] : [s].
Because [s]| is inconsistent, we can find A such that = A : [B] : [s] and,
by Lemma 12, - |A]| : [[B]] : s. We finally apply Lemma 11 (| [B]| = B)
and obtain+ |A] : B:s. O

Example 6. In F?, the sort x is consistent since the type Va : %.a is not
inhabited. The previous lemma gives us a proof that [x]| is also consistent
since a proof of = VX : [¥].X = [Va : x.a] could be projected to a proof
of Va : x.ax.

Theorem 16 (normalization). If P is strongly normalizing, so is P2.

Proof. The proof is based on the observation that, if a term A is typable in
P? and not normalizable, then at least either:

e one of the first-level subterms of A is not normalizable, or

e the first-level term | A | is not normalizable.

And yet |A] and the first-level subterms are typable in P (Theorem 7)
which would contradict the strong normalization of P.

O

3.3 Parametricity

In this section we develop Reynolds-style (Reynolds, 1983) parametricity
for P, in P2. While parametricity theory is often defined for binary rela-
tions, we abstract from the arity and develop the theory for an arbitrary

3. THE SECOND LEVEL 75

arity n, though we omit the index n when the arity of relations plays no
role or is obvious from the context.

The definition of parametricity is done in two parts: first we define what
it means for an n-tuple of programs z to satisfy the relation generated by
a type T (z € [T],°); then we define the translation from a program z of
type T to a proof [z], that a tuple z satisfies the relation.

The definition below uses 1 + 1 renamings: one of them (°) coincides with
that of lifting, and the others map x respectively to xq, ..., x,. The tuple A
denotes n terms A;, where A; is the term A where each free variable x is
replaced by a fresh variable x;.

Definition 17 (parametricity).

C e [s] = C—[s]

Ce(x:A)—B] = (x:A)— (¥:x€[A]) = Cx € [B]
C e [T] = [T] C otherwise

[x] =

[Ax : A. B] = Ax:A Ax:x € [A]. [B]

[AB] = [A]B[B]

[T] = Az:T.z € [T] otherwise

[= -

[T, x: A — [[LX:A%:Te[A]

Because the syntax of values and types are unified in a PTS, each of the
definitions - € [-] and [-] must handle all constructions. In both cases, this
is done by using a catch-all case (the last line) that refers to the other part
of the definition.®

Remark 18. For arity 0, parametricity specializes to lifting ([A]o = [A]).
Example 7. For instance, in F2, we have
(f,8) €EV(a:%).a = V(B :%).p— af=
Viea: %) (X:a—a— [*])(x:a)(x:a)Xxx —
VBB :*)(Y:p—= B [xD)y:p)y:p)Yyy —
X(fapxy)(gapxy)

We can then state our version of the abstraction theorem:

Theorem 19 (abstraction). If T = A : B : s, then [I] [A] : (A € [B]) : [s]

Proof. The result is a consequence of the following lemmas.

5A note about syntax: the construction - € [-] constructs types and therefore binds tighter
that the colon.

®Readers familiar with Paper I might wonder why we need a longer definition of the
relational interpretation here. The question is addressed in Section 4.1.

76 Realizability and Parametricity in PTSs

A—pB = [[A]]—>E[[B]}

I'A:B=([I|FA:B

TFB:s=[I],z:BF-z€[B]:][s]

TFA:B:s=[I]F[A]:Ae€][B]

The proof of the last three lemmas is done by simultaneous induction on
the length of the derivations. (Details in appendix.) O

A direct reading of the above result is as a typing judgement about trans-
lated terms (as for lemmas 9 and 12): if A has type B, then [A] has type
A € [B]. However, it can also be understood as an abstraction theorem for
system P: if a program A has type B in I', then various interpretations of
A (A) in related environments ([I']) are related, by the formula A € [B].

The system P? is a natural setting to express parametricity conditions for
P. Indeed, the interaction rules of the form (s, [s2], [s2]) coming from
axioms (s1,82) in P are needed to make the sort case valid; and the interac-
tion rules (s, [s3], [s3]) are needed for the quantification over individuals
in coming from rules (s1, s, s3) in the product case.

3.4 Realizability

We develop here a Krivine-style (Krivine, 1997) internalized realizability
theory. Realizability bears similarities both to the projection and the para-
metricity transformations defined above.

Like the projection, the realizability transformation is applied on second-
level constructs, and behaves differently depending on whether it treats
interaction constructs or pure second-level ones. It is also similar to para-
metricity, as it is defined in two parts. In the first part we define what it
means for a program C to realize a formula F (C I F); then we define the
translation from a proof p to a proof p that the program |p| satisfies the
realizability predicate.

4. THE THIRD LEVEL 77

Definition 20 (realizability).

CIF [s] = C—s]

CFVx¥:AB = VYx*:A.CIFB
Clkvxlsl:AB = V(5 : Al %1 A).CxI-B
CIFF = F C otherwise

xls] — sl

AxS: A.B = Ax*:AB

Axlsl: AB = A(: A (x5 % I-A)B
(AB)s = (AB)s

(AB)q = ((A[B])s B)s

T = Az°:|T]. z Ik T otherwise
T x5: A = I,x5:A

r,xlsl:A = I, [A]LxlxIFA

Theorem 21 (adequacy). IfTHA:B: [s]|, thenT HFA: [A]IFB : [s]

Proof idea. Similar in structure to the proof of the abstraction theorem. [
Example 8. In F?, the formula y I N x unfolds to

V(e :x)(X:IN = a = [*])(f:a = a).
(V(n:N)(y:a).Xny — X (Succ n) (fy)) = V(z:a).X0y - Xx(yafz)

In F? this formula may be used to prove a representation theorem. We
can prove that ¥ - Vxy : Ny IF Nx & x =N yN x where X is a set of
extensionality axioms (and < are defined by usual second-order encod-
ings). Let 77 be a proof of Vx : N.Nx — N (f x) then - [77] : N — IN and
Fom:|m| Ik Vx: NNNx — N (fx) which unfold to - 77 : Vxy : N.y |-
Nx — ||y IF N(fx). Let m be a term in closed normal form such that
Fm : IN, we can prove N m and therefore m |- N m. We now have a proof
(under %) that [77| m |- N (f m) and we conclude that |7t| m = fm. We
have proved that the projection of any proof of Vx : N.Nx — N (fx)
can be proved extensionally equal to f. See (Wadler, 2007; Krivine, 1997;
Leivant, 1990) for more details.

4 The third level

By casting both parametricity and realizability in the mold of PTSs, we are
able to discern the connections between them. The connections already
surface in the previous sections: the definitions of parametricity and real-
izability bear some resemblance, and the adequacy and abstraction theo-

78 Realizability and Parametricity in PTSs

rems appear suspiciously similar. In this section we precisely spell out the
connection: realizability and parametricity can be defined in terms of each
other.

We first remark that realizability increases arity of parametricity.

Theorem 22 (realizability increases arity of parametricity). For any tuple
terms (B,C), B
(B/ C) S [[A]]n-H =Bl (C € [[Aﬂn> and [[A]]n-i-l = [Aﬂn

Proof. By induction on the structure of A. O

As a corollary, n-ary parametricity is the composition of lifting and » real-
izability steps:

Corollary 23 (from realizability to parametricity). C € [A], = C; IF C2 IF
IFCylF[A] and [A]n = [A] (assuming right-associativity of IF)

Proof. By induction on n. The base case uses [A]p = [A]. O

One may also wonder about the converse: is it possible to define realiz-
ability in terms of parametricity? We can answer by the affirmative, but
we need a bigger system to do so. Indeed, we need to extend [-] to work
on second-level terms, and that is possible only if a third level is present
in the system. To do so, we can iterate the construction used in Section 3
to build a logic for an arbitrary PTS.

Definition 24 (third-level system). Given a PTS P = (S, A, R), we define

P = (Pz)z, where the sort-lifting [-] used by both instances of the -2
transformation are the same.

Remark 25. Because the sort-lifting used by both instances of the -2 transforma-
tion are the same, P contains only three copies of P (not four). That is, for each
s, we unify the sort [s] obtained from the first application of -> and [s] obtained
from the second application. In fact p3 = (83, A3,7?,3), where

8§ = s [SI[[S]]
A=A [A][[A]]
R® = R [R][[R]]

]
]

(81, [s1), (Is], [TsT1, [[s11) | (s,5,8) € R}
[[s1, [TsT1 TTsT1) | (s,5) € A}

S

The [-] transformation is extended to second-level constructs in P?, map-
ping them to third-level ones in P3. The || transformation is similarly
extended, to map the third level constructs to the second level, in addition
to mapping the second to the first one (only the first level is removed).

Given these extensions, we obtain that realizability is the composition of
parametricity and projection.

4. THE THIRD LEVEL 79

Lemma 26. If A is a first-level term, then
A=|Ce[All)] and A=|[[A]]

Proof. By induction on the structure of A, using separation (Theorem 7).
O

Theorem 27 (from parametricity to realizability). If A is a second-level term,
then

ClFA=[[Cle[Al:] and A= |[A]i]

Proof. By induction on the structure of A, using the above lemma. O

4.1 Infinite PTSs

In the previous sections, we describe parametricity (or realizability) in two
interwoven parts; one that treats types (or formulas) and the other that
treats programs (or proofs). This is the schema classically found in the
literature. However, handling types and programs separately is somewhat
disappointing in the context of PTSs, whose one of the main strengths is
the unification between programs and types (or proofs and formulas).

Such a unification can apparently be done by simply unfolding the uses of
- € [-] in the definition of [-] (or - IF - in the definition of -). We obtain the
definition given in Figure 2.4. However, this definition introduces more
abstractions in the terms generated by [-] or -; and this means that more
product rules are needed in the logic.

Furthermore, one would like to also unify terms and types in the ab-
straction and adequacy theorems. That is, use the shorter notation [I'] -
[A] : [BJA (orT = A : BA) instead of [I'] - [A] : A € [B] : [s] (or
I'-A:|A]lFB:[s]).

The issue is then that, B can now be a top-sort, and A € [s] is A — [s],
which is not typable in P2

Definition 28 (top-sort). A sort s is called a top sort if there is no axiom
(s,s") € R.

An obvious solution is to forbid top-sorts, as Bernardy, Jansson, and Pa-
terson (2010).7 In that case, not only can the theorems be simplified, but
the definitions of parametricity and realizability as well (the extra abstrac-
tions become typable). Forbidding top-sorts seems like a drastic measure.
However, many systems have already been extended with infinite sort hi-
erarchies.

7In Paper I (which is an extended version of Bernardy, Jansson, and Paterson (2010)), we
have refined the result: we do not need an infinite sort hierarchy, but only a few extra sorts
and rules to make the terms generated by [-] typeable.

80 Realizability and Parametricity in PTSs

Parametricity
[x] =%
[s] = Ax75.% — [s]
[(x:A) = Bl =Af:((x: A) = B). (x: A) = (#: [A]X) — [B] (fx)
[Fa] = [Fla[a]
[Ax: A.b] = Ax: A. A% : [A] %. [b]

Projection

| Vx [sT. A

Realizability <+ Parametricity

[A] = [A]o
A= [[A]]
[Allns1 = [Aln

Theorems
'-A:B = |I'|F |A]:|B]
I'HtA:B = TFA:B|A]
I'A:B = [I]F[A]:[B]A

Figure 2.4: Parametricity and realizability for infinite PTSs in a nutshell.
(We could also have chosen realizability plus lifting instead of parametric-
ity plus projection as basic constructs)

5. EXTENSIONS 81

sort hierarchies. For example, the Generalized Calculus of Constructions
(Coquand, 1986; Miquel, 2001) extends CC in that way.

Definition 29 (CC,,). CC,, is a PTS with this specification:
e S={x}u{d |ie N}
° A:{*:DO}U{Di:Di+l ‘IEN}

e R={x~x*~0;,0~x*|icN}U
{(Di/ Djr |:lmax(i,j)) | iLje N}

Many dependently-typed programming languages and proof assistants al-
ready support infinite sort hierarchies: Agda (Norell, 2007) and CoqQ (team,
2010) are two well-known examples.

5 Extensions

5.1 Inductive definitions

Even though our development assumes pure type systems, with only ax-
ioms of the form (sq,s;), the theory easily accommodates the addition of
inductive definitions.

For parametricity, the way to extend the theory is exposed by Bernardy,
Jansson, and Paterson (2010). In brief: if for every inductive definition in
the programming language there is a corresponding inductive definition in
the logic, then the abstraction theorem holds. For instance, to the indexed
inductive definition I corresponds [I], as defined below. (We write only
one constructor ¢, for concision, but the result applies to any number of
constructors.)

data[:V(x:A) - (x4 : Apn).s where
Cp : V(x : Bpll) te (xn : Bp,n).l aprl e ap,n

dataI]: 1€ [V(x:A) - (xn: Ay).s] where
fepl :cp € [V(x:Bp) -+ (xn: Bpu)dlapi---apul

The result can be transported to realizability by following the correspon-
dence developed in the previous section. By taking the composition of
[-] and [-] for the definition of realizability, and knowing how to extend
[-] to inductive types, it suffices to extend |-] as well (respecting typing:
Lemma 12). The corresponding extension to realizability is compatible
with the definition for a pure system (by Theorem 27). Adequacy is proved
by the composition of abstraction and Lemma 12. The definition of |-] is
straightforward: each component of the definition must be transformed by
|-|. That is, for any inductive definition in the logic, there must be another

82 Realizability and Parametricity in PTSs

inductive definition in the programming language that realizes it. For in-
stance, given the definition I given below, one must also have |I|. I is then
given by I = [[I]], but can also be expanded as below.

data[:V(x:A) - (x4 : Ap).[s]| where
cp:V(x:Bp1)- - (xn:Bpn)laps - apn

data |[I]: |V(x: A) - (x4 : Ap).[s]] where
chj DV(x: Bp,l) o (xn : Bpy).d ap1- ~ap,nj

datal: [I|IF (V(x:A)---(xy:Ay).[s]) where
cp i lepl IF (V(x:Bpa) - (xn: Bpu)-lapy---apn)

We can use inductive types to encode usual logical connectives, and derive
realizability for them.

Example 9 (conjunction). The encoding of conjunction in a sort [s] is as
follows:
data __: [s] — [s] — [s] where
conj:VPQ:[s]l.P—-Q—PQ

If we apply the projection operator to the conjunction we obtain the type
of its realizers: the cartesian product in s.

data __ :s — s — s where
(L_):VaB:sa—p—ap

Now we can apply our realizability construction to obtain a predicate
telling what it means to realize a conjunction.

data :V(a:s).(a — [s]) —
V(B:s).(B— [s]) =
«ff — s where
conj:V(a:s)(P:a— [s])
(B:5)(Q:p— [s])(x:a)(y:p)
Px—Qy— aPBQ(x,y)

By definition, ¢ I- PQ means |P] P |Q]| Qt. We have
tlF PQ < (mtt) I P(mt) IFQ
where 7t and 7t are projections upon Cartesian product.

We could build the realizers of other logical constructs in the same way:
we would obtain a sum-type for the disjunction, an empty type for falsity,
and a box type for the existential quantifier. All the following properties
(corresponding to the usual definition of the realizability predicate) would
then be satisfied:

5. EXTENSIONS 83
o tIF PQ < casetwithix — xIFPlix — xIF Q.
ot < andtl-P < V(x: |P]).(xIFP)
o tI-3Jx: AP <& Jx: A.(unboxt) I P

where case. .. with... is the destruction of the sum type, and unbox is the
destructor of the box type.

5.2 Program extraction and computational irrelevance

An application of the theory developed so far is the extraction of programs
from proofs. Indeed, an implication of the adequacy theorem is that the
program | A |, obtained by projection of a proof A of a formula B, corre-
sponds to an implementation of B, viewed as a specification. One says that
|- | implements program extraction.

For example, applying extraction to an expression involving vectors (as
defined in the previous section) yields a program over lists. This means
that programs can be justified in the rich system P?, and realized in the
simple system P. Practical benefits include a reduction in memory usage:
Brady, McBride, and McKinna (2004) measure an 80% reduction using a
technique with similar goals (but using a different technique).

While P? is already much more expressive than P, it is possible to fur-
ther increase the expressive power of the system, while retaining the ad-
equacy theorem, by allowing quantification of first-level terms by second-
level terms.

Definition 30 (P?). Let P = (S, A, R), we define P? = (8%, A¥,R?)

=S {[s]|seS}
=A {([s],[s]) | (s,5) € A}
=R {([s],[s],[s1), (s, [s], [s]), ([s],5,5) | (s,5,5) € R}
{(s, [s],Ts1),([s],s,8) | (s,5) € A}

The result is a symmetric system, with two copies of P. Within either side
of the system, one can reason about terms belonging to the other side. Fur-
thermore, either side has a computational interpretation where the terms
of the other side are irrelevant. For the second level, this interpretation is
given by |-|.

Even though there is no separation between first and second level in P,
adequacy is preserved: the addition of rules of the form ([s1],sp,s3) only
adds first level terms, which are removed by projection.

84 Realizability and Parametricity in PTSs

6 Related work and conclusion

This work builds upon realizability in the style of Krivine (1997) and para-
metricity in the style of Reynolds (1983), which have both spawned large
bodies of work.

Logics for parametricity. Study of parametricity is typically semantic,
including the seminal work of Reynolds (1983). There, the concern is to
capture the polymorphic character of A-calculi (typically System F) in a
model.

Mairson (1991) pioneered a different angle of study, where the expressions
of the programming language are (syntactically) translated to formulas de-
scribing the program. That style has then been picked by various authors
before us, including Abadi, Cardelli, and Curien (1993), Plotkin and Abadi
(1993), and Bernardy, Jansson, and Paterson (2010).

Plotkin and Abadi (1993) introduce a logic for parametricity, similar to
F2, but with several additions. The most important addition is that of a
parametricity axiom. This addition allows to prove the initiality of Church-
style encoding of types.

Wadler (2007) defines essentially the same concepts as us, but in the spe-
cial case of System F. He points out that realizability transforms unary
parametricity into binary parametricity, but does not generalize to arbi-
trary arity. We find the n = 0 case particularly interesting, as it shows
that parametricity can be constructed purely in terms of realizability and
a trivial lifting to the second level. We additionally show that realizability
can be obtained by composing parametricity and projection, while Wadler
only defines the realizability transformation as a separate construct. Our
projection |- | corresponds to what Wadler calls Girard’s projection.

The parametricity transformation and the abstraction theorem that we ex-
pose here are a modified version of (Bernardy, Jansson, and Paterson,
2010). The added benefits of the present version is that we handle finite
PTSs, and we allow the target system to be different from the source. The
possible separation of source and targets is already implicit in that paper
though. The way we handle finite PTSs is by separating the treatment of
types and programs.

Realizability. Our realizability construction can be understood as an ex-
tension of the work of Paulin-Mohring (1989a), providing a realizability in-
terpretation for a variant of the Calculus of Construction. Paulin-Mohring
(1989a) splits CC in two levels; one where x becomes Prop and one where
it becomes Spec. Perhaps counter-intuitively, Prop lies in what we call
the first level; and Spec lies in the second level. Indeed, Prop is removed
from the realizers. The system is symmetric, as the one we expose in

A. VECTORS FROM LISTS 85

Section 5.2, in the sense that there is both a rule (Spec, Prop, Prop) and
(Prop, Spec, Spec). In order to see that Paulin-Mohring’s construction as a
special case of ours, it is necessary to recognize a number of small differ-
ences:

1. The sort Spec is transformed into Prop in the realizability transfor-
mation, whereas we would keep Spec.

2. The sorts of the original system use a different set of names (Data
and Order). Therefore the sort Spec is transformed into Data in the
projection, whereas we would use Prop.

3. The types of Spec and Prop inhabit the same sort, namely Type.

4. There is elimination from Spec to Prop, breaking the computational
irrelevance in that direction.

The first two differences are essentially renamings, and thus unimportant.

Connections. We are unaware of previous work showing the connection
between realizability and parametricity, at least as clearly as we do. Wadler
(2007) comes close, giving a version of Theorem 22 specialized to System
F, but not its converse, Theorem 27. Mairson (1991) mentions that his
work on parametricity is directly inspired by that of Leivant (1990) on
realizability, but does not formalize the parallels.

Conclusion. We have given an account of parametricity and realizability
in the framework of PTSs. The result is very concise: the definitions occupy
only a dozen of lines. By recognizing the parallels between the two, we
are able to further shrink the number of primitive concepts, as we show in
Figure 2.4.

Our work points the way towards the transportation of every parametricity
theory into a corresponding realizability theory, and vice versa.

Acknowledgements

Thanks to Andreas Abel, Thorsten Altenkirch, Thierry Coquand, Peter Dy-
bjer and Guilhem Moulin for helpful comments and discussions.

A Vectors from Lists

When programming with rich type systems, one often defines multiple
variants of a structure, with more or less information captured in the type.

86 Realizability and Parametricity in PTSs

For example, one may define a structure for lists, and a variant which
records the length of the list in an index:

dataList (« : %) : xwhere
[] : Lista
u:a — Lista — Lista

dataVec (a: x) : N — xwhere
[] : Veca zero
u:a — (n:IN) - Vecan — Veca (succn)

It is then sometimes unclear which version of the datatype to use for which
purpose. Therefore, anticipating a wide range of applications, the authors
of such structures cannot help but duplicate the algorithms in addition of
the types, as it is done for example in the Agda standard library Daniels-
son, 2010.

Further, the above basic blocks are often combined to build complex pro-
grams, yielding a combinatorial explosion in the number of variants of
types. This proliferation of variants makes dependently-typed program-
ming awkward; and ultimately impedes the use of rich types.

We believe that the transformations that we expose here can help relating
the various versions of a type, and therefore alleviate the type-explosion
problem.

Consider the following version of the List type®:

dataList (« : %) : x where
[] : Lista
_ i _:a — Lista — Lista

We can apply the projecting transformation on this version of List, to obtain
List (since « is first-level, all its occurrences are removed):

data List : x where
[] : List
;v _:List — List

which is equal to the usual inductive definition of natural numbers, up to
renaming:

datalN : x where
zero : IN
succ_: IN — IN

80ne may wonder why it is admissible to change the sort of the argument as we do. The
reason is that the actual elements of a list are irrelevant to its structure. Using different sorts
is a way to express this fact.

A. VECTORS FROM LISTS 87

One can also apply the realizability transformation on List, and obtain:

dataList (a : x) : List — % where
[] : Lista[]
u:a — (n:List) — Listan — Lista(:: n)

which is (up to renaming) equal to the definition of vectors shown above.
The above development can be summarised in the slogan: vectors show
that naturals realise lists.

In itself, the above observation is already useful: it can save a lot of work to
users of dependently-typed programming languages. Indeed, from regu-
lar types, the language may take advantage of realizability to automatically
generate indexed versions.

The benefits do not stop there however, since, from any program involving
lists, one can extract its homologue on vectors. Consider for example a
function appending two lists:

++:Lista — Lista — Lista
[| H xs = xs
(x:xs) H ys = x: (xs H ys)

its projection is

t++:N - N — N
0 ++xs = xs
(::xs) +4ys = = (xs++ys)

which is merely addition of naturals; and its realizability interpretation
has type

++:(n:N) - Vecan - (m:N) — Vecam —
Veca (n + +m)

and is vector concatenation.

The correspondence goes all the way: by adequacy, one can also transform
formulas and proofs concerning lists into formulas and proofs on vectors.

Using a similar technique, one may also transform all programs and proofs
on vectors to programs and proofs on lists. In that case one needs to project
away the index.

The connection between lists and vectors has been pointed out before. For
example, Mcbride (2010) and Atkey, Johann, and Ghani (2010) do it using
an algebraic approach. Attempts to unfiy various list-like structures also
exist (Danielsson, 2010, Data.Star module). Still, we believe that the con-
nection is an elegant illustration of the power of the realizability transform.

88 Realizability and Parametricity in PTSs

B Details of proofs

This appendix contains the details of the proofs of normalization and ab-
straction theorems.

B.1 Normalization
Theorem 31 (normalization). If P is strongly normalizing, so is P2.

Proof. The proof is based on the observation (referred as (*) below) that, if
a term A is typable in P? and not normalizable, then at least either:

e one of the first-level subterms of A is not normalizable, or

e the first-level term | A | is not normalizable.

Then, by separation (Theorem 7), the first-level subterms are typable in P,
so they must be normalizable. We conclude that A must be normalizable.

To the above observation (x) we first decompose the reduction relation
—p into three disjoint relations —p = ———;:

1. The relation — reduces abstractions typable with the rules already
in R.

2. The relation — reduces abstractions typable with rules of the form

([s],[s], [s]) for (s,s,5) € R.

3. The relation —; reduces abstractions typable with the other rules
(corresponding to interaction reductions).

We then remark the following facts:

1. If A— A, then A is a second-level term and | A]— | A’]; because
the projection does not erase redexes reduced by —.

2. If A is a second-level term, then
A(—>—;)A" implies |A] = | A']
because the projection erases all redexes reduced by — and by —;.

3. If A—;A’, then the number of interaction redexes in A has been
decreased by one in A'.
Indeed, an interaction redex is always a second-level term and it
always involves an abstraction whose argument is a first-level term.
Therefore, the argument does not contain any interaction redex and
cannot be an abstraction that would create an interaction redex. This
is why —; does not create nor duplicate interaction redexes.

B. DETAILS OF PROOFS 89

4. The number of interaction redexes is invariant by — because inter-
action redexes are second-level terms.

Let A—pgA—rpA—>p...—>pAn—>p... be an infinite sequence of terms.
9 Then we are in one of these situations:

e either we can extract a sub-sequence (A,)ieN such that Ay, (— —;)* — Ay,
foralli € IN;

e or there exists a N such that foralln > N, A,(——;) A, 11 or more
prosaically — is not used in the chain starting from N.

In the former case, because A(—>—;)*—— A implies |A]—45[A’[, we
can build an infinite sequence (| Ay, |)ien decreasing for —.

In the latter case, because —; strictly decreases the number of insignif-
icant redexes and the reduction —> does not change this number, there
exists an integer M > N, such that for all n > M, A,—A,,11. We can
write Ap as B[x — t, .., xx — tx] where all subterms of B that are types
or programs are variables among {x, ..., x¢}. Now, if B[x — .., x5
ti]—>pAnN 1 it means there exists t'; such that Ax11 = B[x = ty,..., X; =
t'i ..., xe — t5] and ti—pt';. By iterating this, we can build an infinite
decreasing sequence starting from f; for some 1 <i < k. O

B.2 Abstraction
Lemma 32 ([-] and substitution).
[t>x = el] = [t x — e][x — [e]]

Proof. Recall that if x is free in ¢, then x; and * are free in [t]. The free
variable ¥ is introduced by the rule [x] = X, therefore if x is substituted by
e, ¥ must be substituted by [e]. Similarly, each of the x; must be substituted
by e; (renaming must be applied to the substituted expression). O

Lemma 33. A—pB — [[A]}—>E[[B]]

Proof. By induction on the derivation. All cases are congruences, except
for the interesting base case, where S-reduction happens.

In that case, we want to show that if

(Ax:T.t)e—pt[x — e]

9 The proof may also be carried out constructively: the idea is to reuse the normalization
procedure of terms in P to normalize terms in P2, More precisely, given a well-typed A,
one can use the normalization procedure of [A| to normalize the 2nd level structure, and
normalize the 1st level subterms independently. The separation properties guarantee that the
interactions between first and second level structure only add a finite number of B-reductions.

90 Realizability and Parametricity in PTSs
then
[(Ax: T. t)e[—p[t[x — e]].
By definition:
[(Ax:T.t)e] =[Ax: T. t]e[e]
= (Ax:T.Ax: [T]x. [t])e[e]
And by Lemma 32, we are left with showing that
(Ax: T Ax - [T]x. [t]) e el —plt] [x — e][x — [e]]

which one can identify as n + 1 instances of S-reduction. O
Corollary 34 ([-] preserves reduction).

A—3B = [A]—g[B]
Furthermore, the number of reductions in the target is n + 1 times the number of
reductions in the source.

Corollary 35 ([-] preserves B-equivalence). A =g B = [A] =g [B]

The following lemmas (36, 37 and 38) are proved by construction of a
derivation tree in P? from a derivation tree in P. The three corresponding
functions are denoted as follows:

1. |-[forTHFA:B=[IJFA:B
2. {}forTHB:s=[I],z: BFze€[B]:]s]
3. [JforTHA:B:s=[I]+[A]: A€ [B]
Even though the constructions are interdependent, it is not difficult to see
that recursive calls are made only on strictly smaller trees.
Lemma36(|-|). TFA:B=[[|-A:B
Proof. By the thinning lemma. For each A;, erase from the context [I'] the

relational variables and j-indexed variables such that j # i. The legality of
the context is ensured by Lemma 37 and Lemma 38.

O

The following two lemmas proceed by case analysis on the derivation tree.
The presentation uses the following conventions:

e Each case is presented separately: first the input tree is recalled, then
the transformed tree is shown. The symbol = is used to separate
input and output trees.

B. DETAILS OF PROOFS 91

e The constructions may make use of the other lemmas, and usages are
marked by ||, {-} or [-].

e Usage of the generation lemma (Barendregt, 1992, Theorem 5.2.13) is
indicated in the input tree. Consequences of generation are placed
higher up.

e For the sake of concision, some usage of the weakening rule are omit-
ted.

e For concision again, mundane parts of the construction are omitted
(squiggly lines indicate missing parts).

Lemma3y ({-}). T+B:s=[[],z:BFz € [B]:[s]

Proof. By case analysis on the derivation of I' - A : B.

Axiom
Fsis
- t
TisFzs. Fls]:[s'T ., .,
— — (s,[s"1.[5T)
z.st—)[s].[s]dEf
Fs g X = zZistz e [s]:[s]

ax

Start
I'ks:s

Ix:skx:s

[[],xTs+kxs «
[T, x7s,2:x€[s],z:xt-%:x—[s] [[],x:s%:Xx€ [[s]],z:x)—ma
T, X752 X €[s],ZcxF X2 : [5] PP

M5 Tcflesrze: oo

Weakening
T'FA:s l"I—C:s'Wk

T x:CHA:s
=

{THA:s} TEC:S|

[z Arze[A]:[s] [MFCi¥ {THC:s')

[[lx:Cz:Arze[A]:[s] [Ix:iCrFelc]:[s1

[[,x:Cx:xe[Clz:AFze[A]:]s]

Abstraction impossible: no type is a lambda abstraction.

92 Realizability and Parametricity in PTSs

Application
'A:s1 THFA—s:s3
generation
I'FF:A—=s TkFa:A
I'Fa:s PP
=
[THEF:A—s:s3]
[MI-[F]:Fe[A—s] . DT ka: Al
[TIEF]: (x:A) =xe[A] > Fxe[s] [ra:A Mha:A:s]
[C]+ [Fla:a € [A] — Fa € [s] [[F]]F[[u]]:ﬁe[[A]]app
[C1F [Flafa]: Fae[s] 4.
[Tl - [Flala] : Fa — [s]
ST Fa:s|
[[l-Fa:s
[[l,z:Fatz:Fa app
[[l,z:Fat [Flaa]z: [s] def
[[],z:Fakz e [Fa]:[s]
Product

THA:s F,x:AFB:sz()
51,52,5
I'+(x:A)—>B:s v

=
l é{F,x:A)—B:sz}
[[l,z:((x:A) = B),x:AFzx:B ® [Tl,x:Az2:x€[Al,y: By e [B]:[s]
[T,z:((x:A) = B),x: A, x:Xx € [A] Fzx € [B] : [s2]

substitution

{THA:s}

ST Az MLXAFTe[A]: [s1]

[T +A:s [T],z: ((x:A) = B),x: AF (#: T € [A]) » zx € [B] : [s]

[T1,Z: ((x: A) = B)F (x: A) — (¢: T € [A]) > zx € [B] : [s]
[,z: ((x:A) = B)Fze [(x: A) = B]: [s]

([s11.[s21,[sT)
(s1.[s1.[sT)

def

Conversion
B:s' s=ﬁs’ I'ks:s”
TEB:s

conv

=
T B:s'} CThs:s”|

[Tlz:Brze[B]:[s'] [s]=p[s'] [[]ts:s”
[z BFzel[B]:[s|

conv

Lemma 38 ([]). TF A:B:s=[[]+ [A]: A € [B]

Proof. By case analysis on the derivation of I' - B : s.

B. DETAILS OF PROOFS 93

Product, Axiom TH+T:s:s

=
CTET s {Tks:s'}
[[IFT:s [[l,zzstze[s]:[s] B
T FT:s) w o substitution
[[l,z: Ttz e [T]: [s] [CIFT — [s]:[s'] abs
[MIFAz:T.z2€[T]: T — [s] def
[CIFT]: T € [s]
Start
{TFA:s}
THA:s [[l,x: A-x€[A]: [s]

- s — st
Tx:AFx: A — [[x:A%:xc[A]F%:%c[A]

Weakening
THFA:B FFC:swk
Ix:CHA:B
=
S[THA:B:4] STEC:s
[T+ [A] : A € [B] [I-C:s A+ C:s}
[[],x:CF [A]: 4 € [B] [[,x:Crxe[C]:[s]

wk

[[],x:Cx:xe[ClF[A]:A e [B]

The construction also uses that ' - A : B&T',x :CFB:s=TFB:s

Abstraction
THA:s1 T,x:AFB:s

generation
ILx:AFb:B TH((x:A) = B):s
' (Ax:A.b):((x: A) = B)

=

abs

é[[F,x:A)—h:B:sz]]
[[],x:Az%:%€[A]F [b] : b € [B]
[T),x:AF (A%:Tc[A]. [B]): (*:% € [A]) = b e [B])
[T (Ax: A A%:F € [A]. [b]) : ((x: A) = (2: T € [A]) = b € [B])
[T F (Ax: A Az:x € [A]. [b]): ((x: A) = (%:% € [A]) — (Ax: A. b)x € [B])

abs

abs

conv

Continuations of the tree (squiggly lines) are similar to derivations found
in {T+ (ITx : A.B) : s}.

Application
THA:s
' ((x:A) = B):s3
generation
I'FF:((x:A)— B) Fl—a:Aa
I'tFa:B[x+— a]

(51,52,53)

pp

94 Realizability and Parametricity in PTSs

=
C[TEFE:((x:A) = B):s3]
[F]-(F]: Fe[(x: A) » B]:s5 def ST a: Al
[T] - [F] : (x: A) = (%: % € [A]) - Fx € [B] [[F]]i—map ([fha:A:s]
[+ [Fla: (£:a € [A]) — (Fae [B])xra] M- fa]:a € AL,
1+ [Flafa]: (Fa € [BD)[x=a][* — [al] 4.,
[T]+ [Fa]:Fa e [Blx — a]]
Conversion
THA:B B=pB' T+B:s
THA:B
=
[THA:B| {T+B:s}
[THA:B S [-4:B [,z Brze[B]: [s] e
[[]+-[A]: A€ [B] Ac[B]=5Ac[B] [[I-AeBl:[s]
[T] - [A]: A € [B] r -

B : s is a consequence of T' - B : s and B =4 B’ (Corollary 35).

Theorem 39 (abstraction). If T = A : B :s, then [T] - [A] : A € [B] : [s]

Proof. Combine Lemma 37 and Lemma 38. O

Paper 111

Testing Polymorphic Properties

The following paper was originally published in the European Symposium
of Programming (ESOP) 2010. The version given here includes the appen-
dices, where details of proofs can be found, as well as small corrections.
Additionally, the body of the text has been edited for typography, and to
match the notation used in the previous papers.

95

Testing Polymorphic Properties

Jean-Philippe Bernardy, Patrik Jansson,
Koen Claessen

Abstract

This paper is concerned with testing properties of polymorphic func-
tions. The problem is that testing can only be performed on specific
monomorphic instances, whereas parametrically polymorphic func-
tions are expected to work for any type. We present a schema for con-
structing a monomorphic instance for a polymorphic property, such
that correctness of that single instance implies correctness for all other
instances. We also give a formal definition of the class of polymorphic
properties the schema can be used for. Compared with the standard
method of testing such properties, our schema leads to a significant
reduction of necessary test cases.

1 Introduction

How should one test a polymorphic function?

A modern and convenient approach to testing is to write specifications as
properties, and let a tool generate test cases. Such tools have been im-
plemented for many programming languages, such as Ada, C++, Curry,
Erlang, Haskell, Java, .NET and Scala (Hoffman, Nair, and Strooper, 1998;
Bagge, David, and Haveraaen, 2008; Christiansen and Fischer, 2008; Arts
et al., 2006; Claessen and Hughes, 2000; Saff, 2007; Tillmann and Schulte,
2005; Nilsson, 2009). But how should one generate test cases for poly-
morphic functions? Parametrically polymorphic functions, by their very
nature, work uniformly on values of any type, whereas in order to run a
concrete test, one must pick values from a specific monomorphic type.

As an example, suppose we have two different implementations of the
standard function reverse that reverses a list:

reversel, reverse? : Va.Lista — Lista

In order to test that they do the same thing, what monomorphic type
should we pick for the type variable a? Standard praxis, as for exam-
ple used by QuickCheck (Claessen and Hughes, 2000), suggests to simply
use a type with a large enough domain, such as natural numbers, resulting
in the following property:

Vxs : ListIN. reversel xs == reverse2xs

97

98 Testing Polymorphic Properties

Intuitively, testing the functions only on the type IN is “enough”; if the
original polymorphic property has a counter example (in this case a mono-
morphic type T and a concrete list xs : List T), there also exists a counter
example to the monomorphic property (in this case a concrete list xs’ :
List IN).

However, how do we know this is enough? And, can we do better than
this? This paper aims to provide an answer to these questions for a large
class of properties of polymorphic functions. We give a systematic way
of computing the monomorphic type that a polymorphic property should
be tested on. Perhaps surprisingly, we do this by only inspecting the type
of the functions that are being tested, not their definition. Moreover, our
method significantly improves on the standard testing praxis by making
the monomorphic domains over which we quantify even more precise. For
example, to check that reversel and reverse2 implement the same function,
it turns out to be enough to test:

Vn:IN. reversel[1 .. n] == reverse2[1 .. n]

In other words, we only need to quantify over the length of the argument
list, and not its elements! This is a big improvement over the previous
property; for each list length n, only one test suffices, whereas previously,
we had an unbounded number of lists to test for each length. This signifi-
cantly increases test efficiency.

Related Work There are a few cases in the literature where it has been
shown that, for a specific polymorphic function, testing it on a particular
monomorphic type is enough. For example, Knuth’s classical result that
verifying a sorting network only has to be done on booleans (Knuth, 1998,
sec. 5.3.4), can be cast into a question about polymorphic testing (Day,
Launchbury, and Lewis, 1999). The network can be represented as a poly-
morphic function parametrised over a comparator (a 2-element sorter):

sort:Va.(a a > a a) — Lista — Lista

Knuth has shown that, in order to check whether such a function really
sorts, it is enough to show that it works for booleans; in other words check-
ing if the following function is a sorting function:

sort_Bool : List Bool — List Bool
sort_Bool = sort (A (x,y) — (xy,xy))

Another example is a result by Voigtlander (2008), which says that in order
to check that a given function is a scan function, it is enough to check it
for all possible combinations on a domain of three elements.

The result we present in this paper has the same motivation as these earlier
results, but the concrete details are not exactly the same. In section 4, we
compare our general result with Knuth’s and Voigtldnder’s specific results.

2. EXAMPLES 99

Contributions and outlook Our main contribution is a schema for test-
ing polymorphic properties effectively and efficiently. We explain the
schema both from a theoretical and practical point of view. Our examples
are aimed at giving practitioners a good intuition of the method (section 2)
and demonstrate some of its applications (section 4). A more formal ex-
position is provided in section 3. We cover related and future work in
sections 5 and 6 and we conclude in section 7.

2 Examples

In this section, we discuss a number of examples illustrating the idea be-
hind our method in preparation for the more formal treatment in the next
section. We are using Haskell-style notation® and QuickCheck-style prop-
erties here, but our result can be used in the context of other languages
and other property-testing frameworks.

Example 1. Let us first compare two implementations of the function filter:
filterl, filter2 : Va. (a — Bool) — Lista — Lista

A parametric polymorphic function knows nothing about the type it is
being used on. So, the only way an element of type a can appear in the
result, is if it was produced somehow by the argument of the function. We
can analyse the type of the arguments of the functions under test, in order
to see in what way the arguments can be used to produce an element of
type a. The concrete type A we are going to construct to test the functions
on will represent all such ways in which the arguments can be used to
produce an a.

In the case of filter, the only way we can produce elements of type a, is
by using an element from its argument list (the predicate (a — Bool) can
only inspect elements). So, a natural choice for A is to be the index of the
element from the argument list it used:

data A : xwhere
X:IN — A

In other words, Xi stands for the i element (of type a) from the input list.
Now, we have not only fixed a type to use for a, but also decided which
elements the list xs should be filled with, once we know the length. Thus,
the final monomorphic property becomes:

Vn:IN. p: A — Bool.letxs = [X1..Xn]
in filterl pxs == filter2 pxs

In this version of the paper, the notation has been adapted to improve the coherence with
other chapters of the thesis; however we sometimes omit here the type (or kind) of universally
quantified variables, as in Haskell. For example V a : x. X is often just written V a. X

100 Testing Polymorphic Properties

Note that we still need to quantify over the predicate p of type A — Bool.

The construction we apply here can be seen as a kind of symbolic simu-
lation: we feed the function with symbolic variables (here represented by
naturals), and examine the output. This becomes more clear in the next
example.

Example 2. Let us take a look at a typical polymorphic property, relating
the functions reverse and append (+-)

Va : x.Vxs,ys : List a. reverse (xs +H ys) == reverseys -H reversexs

We can view the left- and right-hand sides of the property as two different
polymorphic functions that are supposed to deliver the same result. Where
can elements in the result list come from? Either from the list xs, or the list
ys. Thus, the monomorphic type A becomes:

data A : xwhere
X:IN — A
Y:N — A

And in the property, we not only instantiate the type, but also the elements
of the lists:

Vn,m:IN. letxs = [X1..Xn]
ys = [Y1..Ym]
in reverse (xs H ys) == reverseys H reversexs

Example 3. Let us take a closer look at the reverse example again, where
we compare two different implementations of the function reverse:

reversel, reverse? : Va.Lista — Lista

The type analysis works in the same way as for reverse. The only way the
function can construct elements in the result list is by taking them from
the argument list; the function argument can only inspect the elements,
not create them. So, the monomorphic datatype A becomes:

data A : xwhere
X:N — A

And the property:
Vn:IN. letxs = [X1..Xn]inreversel xs == reverse2 xs
Arguments of higher-order functions can not only be used to inspect el-

ements of type a, but also used to construct such elements, as the next
example shows.

2. EXAMPLES 101

Example 4. Let us now compare two implementations of the function
iterate:

iteratel, iterate2 : Va.(a — a) — a — Lista

The expression iteratefx generates the infinite list [x,fx,f (fx), ..]. The
standard way of testing equality between infinite lists is to compare finite
prefixes:

Va:*Vk:IN. Vf:a = a.Vx:a.
take k (iteratel fx) == takek (iterate2f x)

In order to calculate a suitable monotype A to test these functions on, we
again analyse the sources of as. The two possible sources are: the second
argument x, and the first argument f. The first argument needs another a
in order to produce an a. The resulting monotype A thus becomes recursive:

data A : xwhere
X:A
F:A— A

And the monomorphic property becomes:
Vk : Nat. take k (iteratel F X) == takek (iterate2 F X)

The interesting thing is that we do not even need to quantify over the
arguments of the functions anymore!

Finally, an example of a property that does not hold.

Example 5. Take a look at the following property which claims that map
and filter commute (which is incorrect as formulated).

Va:x.Vp:a — Bool.Vf:a — a.Vxs: Lista.
mapf (filter pxs) == filter p (mapfxs)

A typical QuickCheck user may pick a to be IN, and running QuickCheck
might produce the following counterexample?:

p = {1 — True,_ — False}
f ={_—1}
xs = [3]

In other words, if p is a predicate that holds only for 1, and f is the constant

function 1, and if we start with a list [3], the property does not hold.

Investigating the left- and right-hand sides as functions from p, f, and xs
to lists, we see that an element of type a may either directly come from the

2Using a recent QuickCheck extension to show functions.

102 Testing Polymorphic Properties

list xs, or be the result of applying f. Expressing this in terms of a datatype,
we get:

data A : xwhere
X:N — A
F:A— A

And the property turns into:

Vp:A — Bool.Vn:IN. letxs = [X1..Xn]
in mapF (filter pxs) == filter p (map F xs)

The only arguments we need to quantify over are the predicate p and
the length of the list xs: the function f is fixed to the constructor F. But
there is one more advantage; the counterexample that is produced is more
descriptive:

p= {F(X1) — True,_ — False}
f=F
xs = [X1]

We clearly see that p holds only for the result of applying f to the (only)
element in the list xs.

3 Generalisation

In this section we present a systematic formulation of our schema to test
polymorphic functions. Additionally we expose the main theoretical re-
sults that back up the method and argue for their correctness. We assume
familiarity with basic notions of category theory, notably the interpretation
of data types as initial algebras (Bird and de Moor, 1997, ch. 2).

3.1 Notation

We use a notation close to that of Bird and de Moor (1997), but borrow the
names of functions from the Haskell prelude. Other notable idiosyncrasies
are the following:

e If F denotes a functor, then the action on morphisms is also written
F. (In Haskell it would be the fmap instance for type constructor F).

e An (F-)algebra is a pair of a type a and function of type Fa — a, but
we often omit the type component. If an initial algebra exists, we call
the type component the least fixed point of F, and write it uF.

e The catamorphism (also known as fold) of the algebra p: Fa—ais
denoted by ([p]) : uF — a.

3. GENERALISATION 103

e The letters o, T, denote type expressions. The brackets in ¢[a] indicate
that 2 may appear in the expression .

e The operators + and denote sum- and product-types, respectively.

e We often use explicit V in type schemes.

3.2 Revisiting reverse

We start by going through all the necessary steps for one particular con-
crete example, namely testing two implementations of reverse against each
other:

reversel, reverse2 : Va.Lista — Lista

The method we use makes a clear distinction between arquments (values
that are passed to the function) and results (values which are delivered by
the function, and should be compared with other results). Furthermore,
the arguments are divided up into two kinds: arguments that can be used
by the function to construct elements of type a, and arguments that can
only be used to observe arguments of type a.

The first step we take in order to compute the monomorphic instance is
to transform the function under test into a function that makes these three
parts of the function type explicit. The final type we are looking for is of
the form:

Canonic = Va.(Fa—a) (Ga—X)—Ha

for functors F,G,H and a monomorphic type X. The argument of type
Fa— a can be used to construct elements of type a, the argument of type
Ga — X can be used to observe arguments of type a (by transforming them
into a known type X), and H a is the result of the function. We call the type
above the canonical testing type; all polymorphic functions of the above type
can be tested using our method, if there exists an initial F-algebra.

How do we transform functions like reverse into functions with a canonical
testing type? We start by “dissecting” arguments that can produce as into
functions that produce exactly one a. For reverse, the one argument that
contains as is of type Lista. We now make use of the fact that all lists can
be represented by a pair of its length and its indexing function, and we
thus replace the list argument with an argument of type N (N —a) (we
will say more about this transformation in section 3.6). After re-ordering
the arguments the new type is

Va.(IN—a) IN—Lista

which fits the requirement, with Fa = IN, Ga = ()3, X = IN,and Ha =
Lista.

3taking advantage of the isomorphism between () — IN and IN.

104 Testing Polymorphic Properties

For the original function reversel (and similarly for reverse2), we can define
a corresponding function with a canonical testing type as follows:

reversel’ : Va. (N —a) IN— Lista
reversel’ = reversel project

This uses an auxiliary function to project the arguments of the new func-
tion to the initial arguments:

project : (IN—a) IN — Lista
project (f,obs) = mapf [l .. obs]

Observe that if the new arguments properly cover the domain (N —a) N,
then the original arguments also properly cover the domain Lista. It means
that the transformations that we have performed to fit the canonical testing
type do not weaken the verification procedure.

What have we gained by this rewriting? Our main result says: to test
whether two polymorphic functions with a canonical testing type are equal,
it is enough to test for equality on the monomorphic type A, where A is
the least fixpoint of the functor F, and to use the initial algebra & : FA — A
as the first argument.

For the reverse example, the least fixpoint of F is simply IN and the initial
algebra is the identity function. Thus, to check if reversel’ and reverse2’ are
equal, we merely have to check

Vobs : IN. reversel’ (id, obs) == reverse2’ (id, obs)

Writing the transformation explicitly is cumbersome, and indeed we can
avoid it, by picking arguments directly from the image of the partially ap-
plied projection function, that is, from the set { project (id, obs) | obs € IN }.
By doing so, we obtain the property given in the introduction.

Vn:IN. reversel [1 .. n] == reverse2[1 .. n]

3.3 Overview

In general, given a function of type Va.co[a]— Ha, the objective is to con-
struct a type A, and identify a set of arguments of type o[a := A] to test it
against. To do so, we proceed with the following three steps.

1. Transform the function to test, whose type is Va.o[a]—+Ha, into a
function whose type is in the canonical form

Va.(Fa—a) (Ga—X)—Ha

where F, G, H are functors. This must be done through an embedding-
projection pair ((e,p) : o[a] C (Fa—a) (Ga— X)). The purpose is

3. GENERALISATION 105

to identify all the ways (for the function) to construct values of type
a, and express them as an algebra of a functor F. (Sect. 3.6).

2. Calculate the initial algebra (uF,a) of the functor F. Parametricity
and initiality implies that fixing the algebra to & and a to uF still
covers all cases. Note that the quantification over the type argument
has now been removed. (Sect. 3.4)

3. Re-interpret the fixing of the algebra to « in step 2 in the context
of the original type, using the projection produced in step 1. The
arguments to test the function on are picked in the set {p(a,s) |
s€ G (uF) — X}. (Sect. 3.5)

After these steps the type argument is gone, and testing can proceed as
usual. We detail the procedure and argue for its validity in the following
sections.

3.4 The initial view

In this section we expose and justify the crucial step of our approach: the
removal of polymorphism itself. We begin with showing that applications
of (some) polymorphic functions can be expressed in terms of a monomor-
phic case.

Suppose that the polymorphic function has type
Va.(Fa—a) (Ga—X)—Ha

that is, its only way to construct values of type a are given by an algebra of
functor F, (X is a constant type where a cannot appear). Then, instead of
passing a given algebra to a polymorphic function, one can pass the initial
algebra, and use the catamorphism of the algebra to translate the results.
If the function can also observe the values of the polymorphic parameter,
then the observation functions passed as argument must be composed with
the catamorphism.

By passing the initial algebra, the type parameter is fixed to uF. The appli-
cations of the catamorphism handle the polymorphism, effectively hiding
it from the function under test. The following theorem expresses the idea
formally. Our proof relies on parametricity (Wadler, 1989) and properties
of initial algebras (Bird and de Moor, 1997, ch. 2)

Theorem 1. Let
e F,G,H be functors and

o f:(Va:+. (Fa—a) (Ga—X)—Ha).

106 Testing Polymorphic Properties

If there is an initial F-algebra (uF,), then

Vt:x,p:Ft—=tr:Gt—=X
fe (p,r) = H(p]) (fur (2,r G([p]))

Proof. We apply the parametricity theorem (restricted to functions) on the
type of f, following mechanically the rules given by Fegaras and Sheard
(1996, theorem 1). After simplification we obtain:

Vf:(Va:x (Fa—a) (Ga—X)—Ha),
tLtix, pit—t,

p:Ft—tp:Ft—t r:Gt—X
pFo=pp = fi(pr)=Hp(f(prGp))

This equation expresses a general case (f; (p,r)) in terms of a specific case
(Hp (fc (p,r Gp))), under the assumption p Fp = p p. Here, we hope to
find specific values for t, g and p which verify the assumption, and obtain a
characterisation of the polymorphic case in terms of a monomorphic case.
Satisfying the assumption (p Fp = p p) is equiva-

lent to making the diagram on the right commute. p

Let us pick the following values for t, p and p: Ft ——t

o t = yuF, the least fixpoint of F;
e p = a, the initial F-algebra; Fp 0

e 0 = ([p)), the catamorphism of p.

We know from properties of initial algebras and Ft t

catamorphisms that these choices make the dia-
gram commute. Thus, the assumption is verified,
and the proof is complete.
O

Remark 2. The above theorem is a generalisation of (the inverse of) Church en-
codings.

The purpose of Church encodings is to encode data types in the pure A-calculus.
Church encodings can also target the polymorphic A-calculus (Bohm and Berar-
ducci, 1985), and the resulting types are polymorphic. In essence, a data-type
which is the fixpoint of a functor (u F) is encoded to the type Va.(Fa — a) — a.
Conversely, the concrete type uF is a proper representation of Va.(Fa — a) —
a.

Therefore, for the special case of G = () and Ha = a, the above theorem is a
direct consequence of the correctness of Church encodings.

Theorem 1 shows that we can express a polymorphic function in terms of a
particular monomorphic instance, but the expressions still involve apply-
ing (polymorphic) catamorphisms. In the case where we have a function

3. GENERALISATION 107

Vs:G(uF) =X a:F(uF)— (uF). fupas =guras
= {by r G ([p]) being a special case of s}

Vp,r. fura (r G(p])) = gura (r G(p))
= {by (cata p) being a function}

Vp,r. H (p) (fur & (r G (p))) = H (p)) (guF a (r G (p]))
= {by theorem 1}

Vp,r. fapr=gapr

Figure 3.1: Long proof for theorem 3. The universally quantified variables
have the following types, when omitted: a: x,p: Fa—a,r: Ga—X.

to test (f) and a model (g) to compare against, we can apply theorem 1 to
both sides and simplify away the catamorphisms.

Theorem 3. Let F, G, H be functors, letf,g : Va: . (Fa—a) (Ga—X)—Ha.
If there is an initial F-algebra (uF,), then

Vs:G(uF) =X fur (a,s) = gy (a,9)
=Va:x,p:Fa—ar:Ga—X fa(p,r) =ga(p,r)

Proof. 1f f,F (a,s) = guF («,s) holds for any s, then in particular the equal-
ity f,r (2,r G([p))) = gur (a,r G (p])) holds. Applying H ([p]) to both sides
of the equality preserves it, and then we can use theorem 1 to transform
both sides and obtain that f, (p,r) = ga (p,r) holds for any choice of a, p
and r. The steps are detailed formally in figure 3.1. O

3.5 General form of arguments

The results of the previous section apply only to functions of the canoni-
cal type (Va.(Fa—a) (Ga—X)—Ha). In this section we show that we
can extend these results to any argument types which can be embedded in
(Fa—a) (Ga—X).

Definition 4. An embedding-projection pair (an EP) is a pair of functions
e: A—B, p: B— A satisfying pe = id. Because it constitutes evidence
that covering B is enough to cover A, we write (e,p) : A C B to denote
such a pair.

108 Testing Polymorphic Properties

f

7k /\

p e Ha

(Fa—a) (GHX)\/

Figure 3.2: Algebra isolation

Given an EP4 (e,p) : 0[a] C (Fa—a) (Ga— X), one can transform the ar-
guments calculated in the previous section (a paired with any function of
type G (1F) — X) into o[a] by using the projection component, p. The exis-
tence of the embedding guarantees that the domain of the original function
is properly covered. This idea is expressed formally in the following theo-
rem. The type information is summarised diagrammatically in figure 3.2.

Theorem 5. Let F,G,H be functors and let f,g : Va.cla]—>Ha. If there is an
initial F-algebra (uF,a) and an EP (e,p) : o[a] C (Fa—a) (Ga— X), then

Vs: G (uF) = X. r (0 (2,5) = gy (p (2,9))
=Va:x%l:0[al]. fal =gal

4Strictly speaking, this is a polymorphic EP — one EP for each type a.

3. GENERALISATION 109

Proof. Apply theorem 3to f" = f pand g’ = g p as follows:

Vs:G(uF) =X fur (P (,5)) = gur (p (a,5))
& {by definition of }

Vs:G(uF) =X (fur P) (a,5) = (guF P) (5)
& {by definition of f’ and g’}

Vs:G(uF)—=X fur (a,s) = gur (a,s)
= {by theorem 3}

Va:%q:(Fa—a) (Ga—X). fiq=ghq
= {by el being a special case of q}

Va:x,l:ofal fh(el) = gi (el)
& {by definition of f’ and g'}

Va:x,l:oal. (fa p) (el) = (ga p) (el)
& {by definition of }

Va:x|:ofal fa((pe))=ga((pe)l)
& {by the EP law: p e =id}

Va:x,l:olal. fal=gal

O

Properties used for testing are not always expressed in terms of a model,
but very often directly as a predicate: they are merely Boolean-valued
functions. We can specialise the above result to that case: given a poly-
morphic predicate, it is enough to verify it for the initial algebra.

Theorem 6. Let F,G be functors, let f : Va.co[a|— Bool. If there is an EP
(e,p):0[a) C (Fa—a) (Ga— X) and an initial F-algebra (uF,), then

Vs:G(uF)—X fur (p(a,5))
= Va:x,l:0ofal]. fal
Proof. Substitute const True for g in theorem 5. O

One might think that theorem 5, about models, follows from theorem 6,
about properties, using f (p,r) = test(p,r) == model (p,r). This is in fact
invalid in general, because one cannot assume that equality (==) is avail-
able for arbitrary types. Indeed, our usage of parametricity in the proof
assumes the opposite.

The above results show that it is enough to test on arguments picked from
the set | = {p(a,s) | s: G(uF)—X}. This could be done by picking

110 Testing Polymorphic Properties

elements s in G (¢F) — X and testing on p («,s). However, for the efficiency
of testing, it is important not to proceed as such, because it can cause
redundant tests to be performed. This is because the projection can map
different inputs into a single element in I. A better way to proceed is to
generate elements of | directly.

3.6 Embedding construction

The previous section shows that our technique can handle arguments that
can be embedded in (Fa—a) (Ga—X). In this section we show that
all first-order polymorphic arguments can be embedded. Our proof is
constructive: it is also a method to build the EP. It is important to construct
the embedding because it is used in computing the set of arguments to test
the property on.

The general form of a first order argument is a function of type Ca— D a,
where C and D are functors and D is polynomial®. Note that non-functional
values can be represented by adding a dummy argument. Similarly, the
above form includes n-ary functions, as long as they are written in an
uncurried form. We structure the proof as a series of embedding steps
between the most general form and the canonical form. EPs for each step
are composed into the final EP. The overall plan is to split all complex ar-
guments into observations or constructors, then group each class together.
Lemmas detailing these important steps are given after the top-level proof
outline.

Theorem 7. Let C; and D; be functors. If D; are constructed by sum, products
and fixpoints (0,1, 4, , u), and none of the C; a are empty, then there exist functors
F, Gand an EP (e,p) : Va: x. (E; (Cia— D;ja) C (Fa—a) (Ga—X).

Proof. (E (Cia—D;a)
: by lemma 9}
g (Cl a— (SZ (Pz — a)))

by distributing — over (E}
B (Cia—S;) (Ga Pi—a)
= ' by letting F;fa = Gja Pj}
E(Cia—S;) (Fra—a)
l by commutativity and associativity of (E}
E(Ca—s) E(Ra—a)
C ! {by lemma 8} '

(Ga=X) (E(Fa—a)

= (G;@%?F@gs a)=(t+71) — a}

where Ga = (El- (Cia); Fa = +;(F;a) and X is given by the following
lemma from C; and S;. O

N

5Contructed only from + and .

3. GENERALISATION 111

Lemma 8. For all types o, 0 and non-empty types T, T (witness : T and witness :
T) then there exists (e,p) : (T — 0)(t — 0) C 1T — 00.

Proof. The embedding applies the embedded functions pair-wise.
e(f,f) = A(t,t) — (ft,ft)

The projection can be constructed by providing dummy arguments (witness)
to missing parts of the pair. It is safe to do so, because that part of the pair
is ignored by the embedding e anyway. That is, p e = id regardless of the
choice of witnesses.

ph = (At — fst (h(t ,witness)),
At — snd (h (witness,t)))

O

Lemma 9. Let D be a functor constructed by sum, products and fixpoints. Then
there exist types S,P and (e,p) : Da C S (P—a)

Proof. D represents a data structure, which can be decomposed into a
shape (S) and a function from positions inside that shape to elements
(P—a). (See appendix B for a detailed discussion). The shape can be
obtained by using trivial elements (S = D1). For testing purposes, only
structures with a finite number of elements can be generated, and there-
fore one can use natural numbers for positions (P = IN). The projection
can traverse the data structure in pre-order and use the second component
of the pair (N — a) to look up the element to put at each position (as done
by Voigtlander (2009a)). The corresponding embedding is easy to build.

O

3.7 Correctness in practice

We have reasoned in a fast-and-loose fashion: our proofs rely on the
strongest version of parametricity, which holds only in the polymorphic
lambda-calculus.

Applying them to languages with non-termination (like Haskell) is merely
“morally correct” (Danielsson et al., 2006). In general, we assume that
the functions under test are well-behaved with respect to parametricity:
they should not make use of side-effects, infinite data structures, bottoms,
etc. In the context of random or exhaustive testing, these assumptions are
generally valid. Therefore, our results are readily applicable in practice
with a very high level of confidence.

Still, we could extend the result by using a more precise version of para-
metricity, as for example Johann and Voigtlander (2006) expose it.

112 Testing Polymorphic Properties

4 More examples

In this section, we will deal with some more complicated examples.

4.1 Multiple type parameters

While the theoretical development assumes a single type parameter, we
can apply our schema to functions with multiple type parameters. The
basic idea is to treat parameters one at a time, assuming the others con-
stant. We do not justify this formally, but merely show how to proceed on
a couple of examples.

Example 6 (map). Consider the ubiquitous function map, which applies a
function to each element in a list.

map:Vab.(a — b) — Lista — Listb

As usual, we are interested in testing a candidate map function against a
known-working model.

We first aim to remove the type parameter a. To do so, we isolate the
constructors for a by embedding the list argument into a shape (the length
of the list) and a function giving the element at each position (see lemma
9). We obtain the type Vab.(a — b) — IN — (N — a) — Listb. We
see from the type that the only constructor is an algebra of the functor
Fa = IN. The initial F-algebra is

data A : xwhere
X:N — A

After substitution, we have the type Vb. (A — b) - N — (N — A) —
List b, and we know that the third argument is fixed to X.

We can proceed and remove the type parameter b. There is only one con-
structor for b, which is already isolated, so the initial algebra is easy to
compute:

dataB : x where
F:A—- B

After substitution, we have the type (A - B) - N — (N — A) —
List B, and we know that the first argument is fixed to F. The second
and third arguments can be projected back into a list, so we get the final

property:
Vn:IN. letxs = [X1..Xn]
in map; Fxs == map, Fxs

Note that the function to pass to map is fixed: again, only testing for vari-
ous lengths is enough!

4. MORE EXAMPLES 113

Example 7 (prefix). In Haskell, the standard function isPrefixOf tests whether
its first argument is a prefix list of its second argument. isPrefixOf normally
uses the overloaded equality ((==): a — a — Bool) to compare elements
in the first list to elements in the second one. Instead we consider a more
general version that explicitly takes a comparison function as parameter.
In that case, the types of elements in input lists do not have to match. This
generalisation is captured in a type as follows:

isPrefixOf : Vab.(a — b — Bool) — Lista — Listb — Bool

In this example, the type arguments are completely independent, so we can
remove both at once. Both lists can be embedded into a shape (IN) and
a function from positions (N — a) in the familiar way. We get the type:
Vab.(a - b — Bool) = N - (N —- a) - N —» (N — b) — Bool.

Computing the initial algebras offers no surprise. We obtain:

data A : xwhere
X:N — A

dataB : xwhere
Y:N —+ B

We have to test functions of type (A — B — Bool) - N — (N —
A) - N — (N — B) — Bool, with the third argument fixed to X
and the fifth fixed to Y. Again, by using the projection, we know that we
can instead generate lists of Xi and Y j to pass directly to the polymorphic
function.

Thus, a property to check that two implementations of isPrefixOf have the
same behaviour is written as follows:

Veq: A — B — Bool,m: Nat,n:IN.
letxs = [X1..Xm]
ys = [Y1..Yn]
in isPrefixOfl eqxsys == isPrefixOf2 eqxsys

What if we had used the type Va.(a — a — Bool) — Lista — Lista —
Bool®, which is not the most precise type that can be given to the function?

In that case, the initial algebra would be
data A : xwhere

X:N = A
Y:IN = A

and the property would look exactly the same. The difference is that the
function eq would be quantified over a larger set. It would only be passed

6This type is isomorphic to the type of the function isPrefixOf from the standard Haskell
libraries, Va.Eqa = Lista — Lista — Bool

114 Testing Polymorphic Properties

values of the form Xi for the first argument, and Yi for the second argu-
ment, but the generator of random values does not “know” it, because the
type we gave is too imprecise. Therefore, it might generate redundant test
cases, where eq only differs in its results for argument-pairs that are not in
the form Xi, Yi. As we have seen in the above example, this redundancy
is avoided by using the most general type. This is another example where
more polymorphism makes testing more efficient.

4.2 Assumptions on arguments

It can be quite challenging to write properties for functions whose argu-
ments must satisfy non-trivial properties. For example, generating asso-
ciative functions or total orders is not obvious. A naive solution is to gen-
erate unrestricted arguments and then condition the final property on the
arguments being well behaved. This can be highly inefficient if the prob-
ability to generate a well-behaved argument is small. Since our technique
fixes some parameters, it is sometimes easier to find (or more efficient to
generate) arguments with a complex structure. We give examples in the
following sections.

Example 8 (Parallel Prefix). A parallel-prefix computation computes the
list [xl,x1 Bxp,...,x1P...0D xn}, given an associative operation @ and a
list of inputs xq,...,x,. How can we test that two given parallel-prefix
computations have equivalent outputs?

We start with the type Va. (a—a—a) — Lista — Lista. To isolate the con-
structors, we rewrite the list type as usual and get

Va.(a—a—a)—>IN—(N—a)—Lista

We can group the constructors to make the algebra more apparent:

Va.((a a+N)—a)— N — Lista. The next step is to pick the initial alge-
bra.

One might be tempted to use the following datatype and its constructors
for the initial algebra.

data A : xwhere
OPlus: A — A — A
X:N — A

However, we must take into account that the operation passed to the prefix
computation must be associative. The OPlus constructor retains too much
information: one can recover how the applications of & were associated
by examining the structure of A. In order to reflect associativity, a “flat”
structure is required. Thus, one should work with lists?, as follows:

7Ideally a sequence with efficient concatenation should be used, such as finger trees.

4. MORE EXAMPLES 115

A = ListIN
xn = [n]
oplus = (+)

The final property is therefore:

Vn:IN. letxs = mapx|[l..n]
in prefixl oplusxs == prefix2 oplus xs

The problem of testing parallel prefix networks has been studied before,
notably by Sheeran, who has presented a preliminary version of our result
in an invited talk in Hardware Design and Functional Languages (Sheeran,
2007). Voigtlinder (2008) presents another monomorphic instance: he
shows that it is enough to test over a 3-value type (3). At first sight, it
might seem that testing over 3 is better than over N. However, merely
substituting the type-variable with 3 still requires testing all combinations
of the other arguments, yielding 1133" tests® to cover the lists of length n,
while by our method a single test is enough for a given length. Again, the
efficiency of our method comes from the fixing of more arguments than
the type variable.

The above explanation to deal with associativity relies very much on intu-
ition, but it can be generalised. One must always take in account the laws
restricting the input when computing the initial algebra: that is, one must
find the initial object of the category of algebras that respect those laws.
We direct the interested reader to Fokkinga (1996) for details.

Example g (Insertion in sorted list). Consider testing an insertion function
which assumes that its input list is strictly ascending. That is, its type
isVa.(a — a — Bool) — a — Lista — Lista, but the list argument is
restricted to lists that are strictly ascending according to the first argument,
which in turn must be a strict total order. After breaking down the list as
usual one must handle the type Va.(a —+ a — Bool) - a — IN —
(N — a) — Lista.

Forcing the list to be sorted can be tricky to encode as a property of an
algebra. So, instead of constraining the lists, we put all the burden on the
first argument (an observation): it must be a strict total order that also
makes the list ascending. This change of perspective lets us calculate the
initial algebra without limitation. We obtain

data A : xwhere
Y: A
X:IN — A

8 Voigtlander (2008) shows that only some combinations are relevant, but the number of
tests is still quadratic in the length of the input list. 113 is the number of associative functions
in3—3—3.

116 Testing Polymorphic Properties

The element to insert is Y, and as in many preceding examples, the func-
tion receives lists of the form [X1 .. Xn]. This makes generating suitable
orders (A — A — Bool) easy. Indeed, for such an order (ord) to respect the
order of the list, it must satisfy the equation:

ord (Xi) (X]) = i<]

Therefore, we only need to decide on how to order Y with respect to Xi.
That is, decide where to position Y in the list. For an input list of length
n, there are exactly n + 1 possible positions to insert an element. The final
property shows how to define the order given a position k for Y.

Vn:Natk:{0..n}. letxs = [X1..Xn]
in insertl (ord k) Y xs == insert2 (ord k) Y xs
whereord k (Xi) (Xj) = i<}
ordkY Y = False
ordk(XI)Y =i <k
ordkY (X)) = k<j

Example 10 (Sorting network). A generator of sorting networks can be rep-
resented as a polymorphic function of type Va.(a a — a a) — Lista —
Lista. The first argument is a two-element comparator. Note that, by para-
metricity, the function cannot check whether the comparator swaps its in-
puts or not. It is restricted to merely compose instances of the comparator.

Let us apply our schema on the above type. We use the isomorphism
T — ab(t — a)(T — b) to split the first argument, and handle the list as
usual. We obtain the following type.

Va.(a a—a) > (a a—a) >N — (IN — a) — Lista

If we overlook the restrictions on the constructors, the initial algebra is

data A : xwhere
Min:A - A — A
Max: A — A — A
X:lnt — A

As usual, the sorting function is to be run on [X1 .. Xn|. The comparator
is built out of Min and Max. Therefore, to fully test the sorting function, it
suffices to test the following function.

sort_Lat:IN — Lista
sort_Latn = sort (A (x,y) — (Minxy,Maxxy)) [X1 .. Xn]

The output is a list where each element is a comparison tree: a description
of how to compute the element by taking minimums and maximums of

5. RELATED WORK 117

some elements of the input. In order to verify that the function works, we
are left with checking that the output trees are those of a correct sorting
function.

Note that this must be checked modulo the laws which restrict our initial
algebra. Min and Max must faithfully represent 2-element comparators
which can be passed to the polymorphic function. Therefore, the type
A must be understood as a free distributive lattice (Davey and Priestley,
2002) where Min and Max are meet () and join () and Xi are generators.
Note that every term of a free distributive lattice can be transformed to the
normal form given in appendix C.

The correctness of the function can then be expressed as checking each
element of the output (0x) against the output of a known sorting function.
Formally:

S (Y

MC{1..n} #M=n—k \i€M

There are (at least) two possible approaches to proceed with the verifica-
tion.

1. Verify the equivalence symbolically, using the laws of the distributive
lattice. This is known as the word problem for distributive lattices.
One way to do this is to test for syntactical equivalence after trans-
formation to normal form.

2. Check the equivalence for all possible assignments of booleans to the
variables X i, meet and join being interpreted as Boolean conjunction
and disjunction. This is valid because truth tables are a complete
interpretation of free distributive lattices. (See appendix C). In effect,
proceeding as such is equivalent to testing the sorting function on all
lists of booleans.

This second way to test equivalence shows that our technique is es-
sentially (at least) as efficient as that of Knuth (1998), provided that
properties of the distributive lattice structure are cleverly exploited.

5 Related work

Universe-bound polymorphism Jansson, Jeuring, and students of the
Utrecht University Generic Programming class (2007) have studied the test-
ing of datatype-generic functions: polymorphic functions where the type
parameter is bound to a given universe. This restriction allows them to
proceed by case analysis on the shape of the type. In contrast, our method
makes the assumption that type parameters are universally quantified, tak-
ing advantage of parametricity. Since universal quantification and shape

118 Testing Polymorphic Properties

analysis are mutually exclusive, Jansson’s method and ours complement
each other very well.

Shortcut Fusion Shortcut deforestation (Gill, Launchbury, and Peyton
Jones, 1993) is a technique to remove intermediate lists. A pre-requisite
to shortcut deforestation is that producers of lists are written on the form
g () [], or essentially, g« where « is the initial algebra of the list functor. In
general, functions that are normally written in terms of the initial algebra
must be parametrised over any algebra, thereby adding a level of polymor-
phism. This is the exact opposite of the transformation we perform.

Similarity with our work does not stop here, as the correctness argument
for shortcut deforestation also relies heavily on polymorphism and para-
metricity.

Defunctionalisation Reynolds describes defunctionalisation: a transfor-
mation technique to remove higher-order functions (Reynolds, 1998). Each
A-abstraction is replaced by a distinctive constructor, whose argument
holds the free variables. Applications are implemented via case-analysis:
the tag of the constructor tells which abstraction is entered.

Danvy and Nielsen (2001) have shown that defunctionalisation works as an
inverse to Church encoding. Thus, theorem 1 can be seen as a special case
of defunctionalisation, targeted at the constructors of a polymorphic type.
However, our main focus is not the removal of function parameters, but
of type parameters. Indeed, our embedding step, which introduces func-
tion parameters, is often crucial for the removal of polymorphism. Note
also that we do not transform the function under test. In fact, only the
arguments passed to the function are defunctionalised. The constructing
functions are transformed to constructors of a datatype, and the observa-
tions have to perform case-analysis on this datatype.

Concretisation Pottier and Gauthier (2006) introduce concretisation: a gen-
eralisation of defunctionalisation that can target any source language con-
struct by translating its introduction form into an injection, and its elim-
ination form into case analysis. They apply concretisation to Rémy-style
polymorphic records and Haskell type classes, but not removal of poly-
morphism altogether.

QuickCheck As explained in the introduction, the standard way to test
polymorphic functions in QuickCheck (Claessen and Hughes, 2000) is to
substitute IN for polymorphic parameters. In the first runs, QuickCheck
assigns only small values to parameters of this type, effectively testing
small subsets of IN. As testing progresses, the size is increased. This strat-
egy is already very difficult to beat! Indeed, we observe that, thanks to

5. RELATED WORK 119

criterion traditional new
type IN uF
constructors FIN —IN {a}

observations GIN—X G(uF)—X

Table 3.1: Comparison of the traditional QuickCheck praxis to the new
method.

parametricity, if one verifies correctness for a type of size n, the function
works for all types of size n or less. Additionally, because of the inherent
nature of testing, it is only possible to run a finite number of test cases.
Therefore, the standard QuickCheck strategy of type instantiation is al-
ready very good. We can do better because, in addition to fixing the type,
we also fix some (components of) parameters passed to the function. In ef-
fect, meaningless tests (tests that are isomorphic to other already run tests,
or tests that are unnecessarily specific) are avoided.

The situation is summarised in table 3.1. By fixing the constructors, a
whole dimension is removed from the testing space. Even though the
space of observations is enlarged when the type uF is bigger than IN (from
GIN — X to G (uF) — X), the trade-off is still beneficial in most cases. We
argue informally as follows: if uF >IN, then F is a “big” functor, such as
Fa = 1+a a. This means that the set FIN — N is big, and as we replace
that by a singleton set, this gain dwarfs the ratio between G (yF) — X and
GIN — X, for any polynomial functor G.

Besides efficiency, another benefit to the new method is that the generated
counter examples are more informative, as seen on an example in section 2.

In Haskell, there is another pitfall to substituting the polymorphic param-
eter by IN: type classes. Imagine for example that the type parameter is
constrained to be an instance of the Eq typeclass. Because N is such an
instance, it is possible to use it for the type parameter, but this badly skews
the distribution of inputs. Indeed, on average, the probability that a == b,
for generated a and b tends to be very small. A better strategy would be
to have a different instance of Eq for each run, each with a probability of
equality close to 1/2. Our method does not suffer from this problem: we
insist that the methods of classes are explicitly taken into account when
identifying the constructors and the observations.

Exhaustive Checking We argue in the previous section that using IN for
type parameters is a sensible approach for random testing. However, as
Runciman, Naylor, and Lindblad (2008) remark, this does not work as
well for depth-bound exhaustive testing: the dimension of the test space
for constructors FIN — IN) grows exponentially as the depth of the search
increases. They suggest to use smaller types to test on (such as the unit or

120 Testing Polymorphic Properties

Boolean), but the user of the library is left to guess which size is suitable.
Our method kills two birds with one stone: we conjure up a suitable type
parameter to use, and prevent the exponential explosion of the search for
constructors by fixing them. Therefore, we believe that our method is an
essential improvement for exhaustive testing of polymorphic functions.

Typeful programming We make essential use of types. Many property-
based testing tools use type information to generate suitable parameters to
test functions automatically. Here we further the exercise and show that
polymorphism and calculations at the type level can produce type-level
and (more precise) value-level arguments for polymorphic functions.

Symbolic execution Tillmann and Schulte (2005) generate test cases by
symbolic execution of the property to check. As we have mentioned in
section 2, our technique can be understood as symbolic execution, there-
fore, generating test cases by symbolic execution potentially subsumes our
method. The advantage of our approach is that it is purely type-based:
the monomorphic instance is independent of the actual definition of the
property. Therefore, it can work with an underlying black-box tester for
monomorphic code.

6 Future work

While the scope of this paper is the testing of polymorphic functions, our
technique to remove polymorphism is not specific to testing: any kind of
verification technique can be applied on the produced monomorphic in-
stance. This suggests that it may have applications outside the domain of
testing, maybe in automated theorem proving. This remains to be investi-
gated.

Automated test-case generation libraries typically address the problem of
generating random values for monomorphic arguments. We have ad-
dressed the problem of calculating values for type arguments. A natural
development would be to unify both approaches in the framework of a
dependently-typed programming language. A first step towards this goal
would be to give a detailed account of parametricity in presence of depen-
dent types.?

With the exception of computing initial algebras with laws, the technique
described here is completely algorithmic. Therefore, one can assume that it
is easy to automate it and build a QuickCheck-like library to test polymor-
phic properties. However, such a tool would need to analyse the type struc-

9This sentence reflects the status at the time of submission of the paper to ESOP. The
previous chapters of the thesis constitute an attempt to tackle the problem.

7. CONCLUSION 121

ture of the functions it is given, and languages based on the polymorphic
lambda calculus typically lack such a feature. Moreover, this very feature
would invalidate the parametricity theorem, since it relies on universally
quantified types being opaque, thereby invalidating our “monomorphisa-
tion” transformation. A long term area of research would be to design
a programming language where parametricity and type-analysis can be
specified on a case-by-case basis. As a short-term goal, we propose to
mechanise the technique as an external tool rather than a library, or re-
quire the programmer to explicitly inform the polymorphic test generator
about the type structure.

We have shown how to get rid of polymorphism using the “initial view” of
the type parameters. As there exists a dual to shortcut fusion (Svennings-
son, 2002), we conjecture that there exists a dual to our method, using
the “final view”. That is, the function should be transformed to isolate
a co-algebra and fix it to the final element of the category. It is unclear
at this point what would be the outcome of this dual in terms of testing
behaviour.

The technique that we present requires a specific form for the type of the
function to test. While our examples show that this form covers a wide
range of polymorphic functions that are commonly tested, one can still
aspire for a larger applicability. We hope to improve this aspect, either
by showing that more types can be embedded, or by amending the core
theory. In particular, we address only rank-1 polymorphism: extending
to rank-n would be useful. Also, the restriction that F must be a functor
in (Fa—a) (Ga— X) seems too specific. Indeed, Church-encoding some
types may lead to F being a type-function that is not a functor, and there
is a-priori no reason that the encoding cannot be reverted. An example is
given by Washburn and Weirich (2003): dataT = Lam (T — T) | AppTT
isencoded asVa.((a—a) —a)— (a—a—a)—aandFa = (a—a)+(a
a), which is not a functor. We hope to achieve this by fully explaining our
technique in a defunctionalisation setting.

7 Conclusion

We have presented a schema for efficient testing of polymorphic proper-
ties. The idea is to substitute polymorphic values by a faithful symbolic
representation. This symbolic representation is obtained by type analysis,
in two steps:

1. isolation of the constructors (yielding a functor F); and
2. restriction to the initial F-algebra.

We suspect that neither of these steps is original, but we could not find
them spelt out as such, and therefore we believe that bringing them to

122 Testing Polymorphic Properties

the attention of the programming languages community is worthwhile.
Furthermore, the testing of polymorphic properties is a novel application
for these theoretical ideas.

We have shown on numerous examples, and informally argued that ap-
plying our technique not only enables testing polymorphic properties by
removing polymorphism, but yields good efficiency compared to the stan-
dard praxis of substituting IN for the polymorphic argument. In some
cases, this improvement is so dramatic that it makes the difference be-
tween testing being useful or not. As another evidence of the value of the
method, we have applied it to classical problems and have recovered or
improved on the corresponding specific results.

Giving a more polymorphic type to a given function enlarges its domain,
so one might think that this can increase the amount of testing necessary
to verify properties about that function. If our technique is applied, the
opposite is true.

You love polymorphism, but you were afraid that it would complicate test-
ing? Fear no more! On the contrary, polymorphism can facilitate testing if
approached from the right angle.

Acknowledgments.

We would like to give special thanks to Marcin Zalewski, whose repeated
interest for the topic and early results gave us the motivation to pursue
the ideas presented in this paper. Peter Dybjer gave useful references
about Church encodings. Anonymous reviewers and Jasmin Blanchette
gave useful comments and helped improve the presentation of the paper.
This work is partially funded by the Swedish Research Council.

A Applying parametricity

In this we section show the details of applying the parametricity theorem
to our canonical testing type: Va.(Fa—a) (Ga—X)—Ha. The idea be-
hind parametricity is that types can be interpreted as relations, and all
values in a closed types are related to themselves. Using double brackets
to denote the relation corresponding to a type, the parametricity theorem
applied tof:Va.(Fa—a) (Ga—X)—Hais

JVa.(Fa—a)—=(Ga—X)—=Ha[ff

Our task is to evaluate the double brackets to obtain a theorem about f
expressed in higher order logic. To do so we could use the definition given
in previous papers (Definition 6, page 21). However, it is more convenient
to use a version where the relations corresponding to type variables are

B. EMBEDDING CONTAINERS 123

specialized to functions. Hence, we follow the rules given by Fegaras and
Sheard (1996). The first step is to handle polymorphism, quantifying over
any function (p) between any types.

Vit:ixkp:t—=t](Fa—a)—=(Ga—=X)—=Halam,fift

The index] ...[a—, is a reminder that the type variable a is to be inter-
preted as the function p inside the double brackets. In the interest of
conciseness, this index is left implicit if there is no ambiguity as to the
interpretation of a type variable.

The rest of the proof is a mostly straightforward interpretation of the type
as relation, and is detailed in figure 3.3. The most tricky case involves
applications of functors, so we detail it in the following lemma.

Lemma 10. Let F: %« — % be a functor, t,t : x,p : t—=t,x: Ft,x: Ft. Then

JFafas pxx=x = Fpx

Proof.
JFa[xx
= {by interpretation of functor application}
Yu:t—t. (Vz:t.]az(uz)) =x = Fux

= {by interpretation of type variable}
Yu:t—t. (Vz:tuz = pz) =x = Fux

{by extensionality}
Yu:t—t. u= p=x = Fux
= {by elimination of u}

x = Fpx

B Embedding containers

In section 3.6 we have given a very restricted view of containers. Abbott,
Altenkirch, and Ghani (2003) and Morris and Altenkirch (2009) provide
the full picture. In this section we refine lemma 9 by using a more precise
definition of containers.

Abbott et al. observe that data types can be expressed as dependent pairs
of a shape (s : S) and a function from positions (Ps) inside that shape to

~
m’ Vi t:ikp:it—t J(Fa—a)—(Ga—X)—=Ha[apfift
S = {by definition of | ... [on function type}
W JFa—a[pp =]Ga—=X[rr = [Ha[(ftpr) (feps)
Wo = {by definition of] ... [on function type}
m (Vx:Fty:Ft.JFa[xy=Ta[(px) (py)) =(Vx:Gty: Gt.JGa[xy=]X[(rx) (ry)) = [Ha[(fepr) (fcps)
= = {by applying 3 times Lemma 10 and [X[is equality}
(Vx:Ftyy:Ft.x = Fpy=px = p(py)) =(Vx:Gt,y:Gt.x = Gpy=rx = ry) = fepr = Hp(f_{t} ps)
= {by substitutions}
(Vy:Ftp(Foy) = p(py)) =(Vy:Gtr(Gpy) = ry) = fepr = Hp (feps)
= {by definition of function composition and extensional equality on functions}
pFpo=pp =rGp=r = fepr = Hp(ftps)
= {by elimination of s}
oFp = pp = fupr = Hp(fep (r Gp))

Figure 3.3: Applying parametricity, part 2. In the above we omit the binders for the variables p, q, r and s, which are implicitly
universally quantified as follows: p:Ft—t,p: Ft—=tr: Gt—=X,s: Gt—=X

124

B. EMBEDDING CONTAINERS 125

Cont:(S:%) = (S = *x) = x = *
ContSPX = (s:S) (Ps — X)

Cont': (S:%) = (S = %) = x = *
Cont/ SPX = S ((s:S) Ps — X)

List = ContINFin -- Example
where Fin n denotes a set with n elements.

data Fin : N — Set where
zero : {n: N} — Fin (sucn)
suc: {n:IN} (i : Finn) — Fin (sucn)

Figure 3.4: The definition of containers (Cont) has a top-level dependent
pair. It can be embedded in a non-dependent version (Cont’).

the type of the element. (We only deal with the 1-parameter case here.)
Figure 3.4 gives the definitions for containers and expresses the list type as
a container.

The transformation of types into their container form yields a dependent
pair ((s : S) (Ps—a)), where a is the polymorphic parameter we at-
tempt to eliminate. As its name indicates, a dependent pair does not quite
achieve independence of the two components. Therefore, transformation
into containers does not quite achieve the separation between construc-
tors and observations. It is unclear how to compute the initial algebra in
this setting. Therefore, we choose to embed the container types in a (non-
dependent) pair: (s: S) (Ps—a). This pair type can be properly broken
down into an observation (S) and a constructor (s:S) (Ps— a). For lists
the observation (the shape) is just the length and the constructor is a func-
tion from list index to list elements. It bears repeating that the observation
will be generated randomly, and the constructor fixed by taking the initial
view. (They will be recombined using the projection.) Therefore, to fully
cover all test cases for a container, one needs only a single test per shape.

There remains to show that such an embedding exists.

Theorem 11. VS, P, X, given an arbitrary x : X, there exists an EP

(e,p): (s:S) (Ps—=X)CS ((s:S) Ps—=X).

Proof. Note that the first component of each pair is the same: a shape.
The second component is a function returning X in both cases, but the
embedded type has a “smaller” domain. The idea is to use the same
shape on both sides, embed the input function in the output function by
returning the same elements when the shape coincides with that of the

126 Testing Polymorphic Properties

projection: V{SPX} —
Cont’SPX — ContSPX
projection (s,f) = (s,Ap—f(s,p))
getX : V{SPX} — (def: X) — {s:S} —
(f: (Ps—=X)) = (sp: (s':S) Ps) —
Dec (s=fstsp) — X

getXdeff (_,p) (yesrefl) = fp

getXdef f _ (no_) = def

embedding : V{SPX} — (def : X) —

ContSPX — Cont’SPX
embedding def (s,f) =

(s,Asp — getXdeffsp(s z fstsp)

Figure 3.5: Embedding containers in a non-dependent pair. The
Agda (Norell, 2007) code uses a type for decidable equality Dec with con-
structors yes and no, the equality proof type = with constructor refl and

assumes S has a decidable equality <

input. A default element is returned otherwise. This yields the definitions
given in figure 3.5. Note that the embedding requires a decidable equality
relation between shapes.

Showing that the projection is the left-inverse of the embedding is trivial,
provided extensionality. O

Note that our proof provides a construction of the projection, so we have
all the elements to generate arguments for testing.

B.1 Breaking containers, in practice

While the procedure described above is very general (it works for any
container), it has two disadvantages:

e dependent pairs are introduced in the monomorphic instance (and
only a few languages support dependent pairs);

e it can be complicated if one wishes to perform it by hand.

The first disadvantage can be overcome by using a position type which
works for any shape (even if it is “too big”). This can be done by erasing
the type index. In the case of lists, we have seen in section 3.2 that we can
use IN instead of (n:IN) (Finn).

C. AUXILIARY RESULTS ABOUT FREE DISTRIBUTIVE LATTICES 127

For the purpose of testing, one can often overcome the second disadvan-
tage by short-circuiting the procedure entirely, as we have proposed in
section 3.6.

We know that our method can treat arguments types as long as they can be
embedded in (Fa — a) (Ga — X). We do not have a complete syntactic
characterisation of the types which possess such an embedding. However,
we can formulate subsets which do possess such an embedding. Such a
subset is any product of CEI-(CZ- a— Dja), where D; is a container type
with decidable equality on shapes and C; is a functor. This subset is a
refinement of that given in section 3.6.

To give some insight to the limitation of the method, we can also give types
for which we failed to find a proper embedding. Notably, an argument of
type (a — X) — Xis problematic: while it seems to fit the pattern Ga —
X with Ga = (a — X), G is not a functor. Types of the form (a — X) —
X are created by continuation-passing style (CPS) transformations. We
suspect that in general the method does not apply to functions expressed
in CPS.

C Auxiliary results about free distributive lat-
tices

We assume free distributive lattices with a finite number or generators.

Theorem 12. Every term of a free distributive lattice can be transformed to the

following normal form:
VA~
M,‘E] xeM;

where there is no i # j such that M; C M;.

Proof (sketch). Inner joins can be eliminated by the distributive law. Redun-
dant meets can be removed by the absorption law. O

Definition 13. The fruth table of term x, denoted]x[, is a mapping of sets
of variables to Boolean values. It can be computed by substituting each
variable by 1 if it is in the set, 0 otherwise, meet and joins being interpreted
as Boolean conjunction and disjunction.

[Xi[(S)=i€S
Jxy[(S) =]x[(S)IyI(S)
Jxy[(S) =]x[(S)IyI(S)

128 Testing Polymorphic Properties

Remark 14. I_f
ME) xeM

Theorem 15. If Ja[=]b[, thena = b

then YM €].Je[M = 1.

Proof. Let us prove the contrapositive, namely a # b =]a[#]b[. Assume
(without loss of generality) that a and b are written in normal form, and
let], and J, be the respective sets of meets of a and b. If a # b then either

e there exists M, € |, such that M, & J,, or

e there exists M; € [, such that M, & J,.

Let use examine the first alternative, knowing that the second can be han-
dled symmetrically. We know that Ja[(M,) = 1. If [b[(M,) = 0, we have
a discrepancy in the truth tables. Assume then that [b[(M,;) = 1. Then,
there must be an M, € J, such that M, C M,. By definition of the nor-
mal form, M, & J,. Again, either there must either be a discrepancy in
the truth tables, or we can repeat the argument with strictly smaller sets.
Eventually, that option becomes unavailable: since there is a finite number
of variables, the empty set is eventually reached. We conclude that there
must be a set M such that Ja[(M) #]b[(M) O

References

Abadi, Martin, Luca Cardelli, and Pierre-Louis Curien (1993). “Formal
parametric polymorphism”. In: Proceedings of the 20th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages. Charleston,
South Carolina, United States: ACM, pp. 157-170. ISBN: 0-89791-560-7.
DOL: 10.1145/158511.158622 (cit. on pp. 51, 66, 84).

Abbott, Michael, Thorsten Altenkirch, and Neil Ghani (2003). “Categories
of Containers”. In: Foundations of Software Science and Computation Struc-
tures. Vol. 2620. Lecture Notes in Computer Science. Springer, Heidel-
berg, pp. 23—38. ISBN: 0302-9743. DOI: 10.1007/3-540-36576-1_2 (cit. on

p- 123).

Arts, Thomas et al. (2006). “Testing telecoms software with quviq QuickCheck”.
In: Proceedings of the 2006 ACM SIGPLAN workshop on Erlang. Portland,
Oregon, USA: ACM, pp. 2—10. ISBN: 1-59593-490-1. DOI: 10.1145/1159789.
1159792 (cit. on p. 97).

Atkey, Robert, Patricia Johann, and Neil Ghani (2010). “When is a Type
Refinement an Inductive Type?” In: Foundations Of Software Science And
Computational Structures. Ed. by Martin Hofmann. Vol. 6604. Lecture
Notes in Computer Science. Springer, pp. 72-87 (cit. on p. 87).

Bagge, Anya Helene, Valentin David, and Magne Haveraaen (2008). “ Axiom-
based testing for C++". In: Companion to the 23rd ACM SIGPLAN con-
ference on Object-oriented programming systems languages and applications.
Nashville, TN, USA: ACM, pp. 721-722. ISBN: 978-1-60558-220-7. DOIL:
10.1145/1449814.1449829 (cit. on p. 97).

Barendregt, Hendrik Pieter (1992). “Lambda calculi with types”. In: Hand-
book of logic in computer science 2, pp. 117-309. DOIL: 10.1.1.26.4391 (cit. on

pp- 6, 13-15, 55, 56, 59, 65, 67, 70, 72, 91).

Berardi, Stepfano (1989). “Type Dependence and Constructive Mathemat-
ics”. PhD thesis. Dipartimento di Informatica, Torino (cit. on p. 65).

129

http://dx.doi.org/10.1145/158511.158622
http://dx.doi.org/10.1007/3-540-36576-1_2
http://dx.doi.org/10.1145/1159789.1159792
http://dx.doi.org/10.1145/1159789.1159792
http://dx.doi.org/10.1145/1449814.1449829
http://dx.doi.org/10.1.1.26.4391

130 References

Bernardy, Jean-Philippe (2010). Lightweight Free Theorems: Agda Library. http:
//wiki.portal.chalmers.se/agda/agda.php?n=Libraries.LightweightFreeTheorems

(cit. on p. 44).

Bernardy, Jean-Philippe, Patrik Jansson, and Koen Claessen (2010). “Test-
ing Polymorphic Properties”. In: European Symposium on Programming.
Ed. by Andrew Gordon. Vol. 6012. Lecture Notes in Computer Science.
Springer, pp. 125-144. DOI: 10.1007/978-3-642-11957-6_8 (cit. on pp. v,
66).

Bernardy, Jean-Philippe, Patrik Jansson, and Ross Paterson (2010). “Para-
metricity and Dependent Types”. In: Proceedings of the 15th ACM SIG-
PLAN international conference on Functional programming. Baltimore, Mary-
land: ACM, pp. 345—356. DOI: 10.1145/1863543.1863592 (cit. on pp. v, 14,
52, 66, 79, 81, 84).

Bernardy, Jean-Philippe and Marc Lasson (2011). “Realizability and Para-
metricity in Pure Type Systems”. In: Foundations Of Software Science And
Computational Structures. Ed. by Martin Hofmann. Vol. 6604. Lecture
Notes in Computer Science. Springer, pp. 108-122 (cit. on pp. v, 51, 52).

Bird, Richard and Oege de Moor (1997). Algebra of programming. Prentice-
Hall, Inc. 1sBN: 013507245X (cit. on pp. 102, 105).

Bohm, Corrado and Alessandro Berarducci (1985). “Automatic synthesis
of typed Lambda-programs on term algebras”. In: Theoretical Computer

Science 39.2-3, pp. 135-154 (cit. on pp. 29, 106).

Bohme, Sascha (2007). “Free theorems for sublanguages of Haskell”. Tool
currently available (2010) at http://www- ps.iai.uni- bonn.de/cgi-
bin/free- theorems - webui . cgi. Master’s Thesis. Technische Universitat
Dresden (cit. on p. 44).

Brady, Edwin, Conor McBride, and James McKinna (2004). “Inductive Fam-
ilies Need Not Store Their Indices”. In: Types for Proofs and Programs. Ed.
by Stefano Berardi, Mario Coppo, and Ferruccio Damiani. Vol. 3085. Lec-
ture Notes in Computer Science. Springer, pp. 115-129. DOL 10.1007/
978-3-540-24849-1 8 (cit. on p. 83).

Cardelli, Luca and Peter Wegner (1985). “On understanding types, data ab-
straction, and polymorphism”. In: ACM Computing Surveys 17.4, pp. 471—
523. ISSN: 0360-0300. DOI: 10.1145/6041.6042 (cit. on p. 5).

Chlipala, Adam et al. (2009). “Effective interactive proofs for higher-order
imperative programs”. In: Proceedings of the 14th ACM SIGPLAN inter-
national conference on Functional Programming. ICFP 'og. Edinburgh, Scot-

http://wiki.portal.chalmers.se/agda/agda.php?n=Libraries.LightweightFreeTheorems
http://wiki.portal.chalmers.se/agda/agda.php?n=Libraries.LightweightFreeTheorems
http://dx.doi.org/10.1007/978-3-642-11957-6_8
http://dx.doi.org/10.1145/1863543.1863592
http://www-ps.iai.uni-bonn.de/cgi-bin/free-theorems-webui.cgi
http://www-ps.iai.uni-bonn.de/cgi-bin/free-theorems-webui.cgi
http://dx.doi.org/10.1007/978-3-540-24849-1_8
http://dx.doi.org/10.1007/978-3-540-24849-1_8
http://dx.doi.org/10.1145/6041.6042

References 131

land: ACM, pp. 79—90. 1SBN: 978-1-60558-332-7. DOI: http://doi.acm.
org/10.1145/1596550. 1596565 (cit. on p- 6).

Christiansen, Jan and Sebastian Fischer (2008). “EasyCheck Test Data for
Free”. In: Functional and Logic Programming. Vol. 4989. Lecture Notes in
Computer Science. Springer, pp. 322—336 (cit. on p. 97).

Church, Alonzo (1940). “A formulation of the simple theory of types”. In:
Journal of symbolic logic 5.2, pp. 56-68. 1SSN: 0022-4812 (cit. on p. 13).

Claessen, Koen and John Hughes (2000). “QuickCheck: a lightweight tool
for random testing of Haskell programs”. In: Proceedings of the fifth ACM
SIGPLAN international conference on Functional Programming. ACM, pp. 268—
279. ISBN: 1-58113-202-6. DOI: 10.1145/351240.351266 (cit. on pp. 97, 118).

Coquand, Thierry (1986). “An Analysis of Girard’s Paradox”. In: Logic in
computer science. IEEE Computer Society, pp. 227-236 (cit. on pp. 16, 81).

- (1992). “Pattern Matching with Dependent Types”. In: Proceedings of the
Workshop on Types for Proofs and Programs, pp. 66—79 (cit. on p. 32).

Coquand, Thierry and Gérard Huet (1986). The calculus of constructions.
Tech. rep. INRIA (cit. on p. 6).

Danielsson, Nils Anders (2010). The Agda standard library (cit. on pp. 86,
87).

Danielsson, Nils Anders et al. (2006). “Fast and loose reasoning is morally
correct”. In: Conference record of the 33rd ACM SIGPLAN-SIGACT sympo-
sium on Principles of programming languages, pp. 206—217. DOI: 10. 1145/
1111320.1111056 (cit. on p. 111).

Danvy, Olivier and Lasse R. Nielsen (2001). “Defunctionalization at work”.
In: Proceedings of the 3rd ACM SIGPLAN international conference on Princi-
ples and practice of declarative programming. Florence, Italy: ACM, pp. 162-
174. ISBN: 1-58113-388-X. DOI: 10.1145/773184.773202 (cit. on p. 118).

Davey, Brian A. and Hilary A. Priestley (2002). Introduction to lattices and
order. Cambridge University Press. ISBN: 0521784514, 9780521784511 (cit.
on p. 117).

Day, Nancy A., John Launchbury, and Jeff Lewis (1999). “Logical abstrac-
tions in Haskell”. In: In Proceedings of the 1999 Haskell Workshop. por:
10.1.1.37.2140 (cit. on p. 98).

Dybjer, Peter (1994). “Inductive families”. In: Formal Aspects of Computing
6.4, Pp. 440—465. DOI: 10.1007/BF01211308 (cit. on pp. 16, 30).

http://dx.doi.org/http://doi.acm.org/10.1145/1596550.1596565
http://dx.doi.org/http://doi.acm.org/10.1145/1596550.1596565
http://dx.doi.org/10.1145/351240.351266
http://dx.doi.org/10.1145/1111320.1111056
http://dx.doi.org/10.1145/1111320.1111056
http://dx.doi.org/10.1145/773184.773202
http://dx.doi.org/10.1.1.37.2140
http://dx.doi.org/10.1007/BF01211308

132 References

Fegaras, Leonidas and Tim Sheard (1996). “Revisiting catamorphisms over
datatypes with embedded functions (or, programs from outer space)”.
In: Proceedings of the 23rd ACM SIGPLAN-SIGACT symposium on Principles
of programming languages. St. Petersburg Beach, Florida, United States:
ACM, pp. 284—294. ISBN: 0-89791-769-3. DOIL: 10.1145/237721.237792 (cit.
on pp. 106, 123).

Fokkinga, Maarten M. (1996). “Datatype Laws Without Signatures”. In:
Mathematical Structures in Computer Science 6.01, pp. 1-32. DOIL: 10.1017/
$0960129500000852 (cit. on p. 115).

Gibbons, Jeremy and Ross Paterson (2009). “Parametric datatype-genericity”.
In: Proceedings of the 2009 ACM SIGPLAN workshop on Generic program-
ming. Edinburgh, Scotland: ACM, pp. 85-93. 1SBN: 978-1-60558-510-9.
DOI: 10.1145/1596614.1596626 (cit. on p. 48).

Gill, Andrew, John Launchbury, and Simon Peyton Jones (1993). “A short
cut to deforestation”. In: Proceedings of the conference on Functional pro-
gramming languages and computer architecture. Copenhagen, Denmark: ACM,
Pp. 223—232. ISBN: 0-89791-595-X. DOIL: 10 .1145/165180 . 165214 (cit. on
pp- 66, 118).

Girard, Jean-Yves (1972). “Interprétation fonctionnelle et elimination des
coupures de 'arithmétique d’ordre supérieur”. These d’état. Université
de Paris 7 (cit. on pp. 5, 7, 51, 65, 66, 69).

Harrop, Ronald (1956). “On disjunctions and existential statements in intu-
itionistic systems of logic”. In: Mathematische Annalen 132.4, pp. 347-361
(cit. on p. 66).

Hoffman, Daniel, Jayakrishnan Nair, and Paul Strooper (1998). “Testing
generic Ada packages with APE”. In: Ada Letters XVIIL6, pp. 255-262.
DOI: 10.1145/301687.289640 (cit. on p. 97).

Hofmann, Martin and Thomas Streicher (1996). “The Groupoid Interpre-
tation of Type Theory”. In: Venice Festschrift. Oxford University Press,

pp. 83—111 (cit. on p. 50).

Hughes, John (2007). “QuickCheck Testing for Fun and Profit”. In: Practical
Aspects of Declarative Languages. Springer, pp. 1-32 (cit. on p. 7).

Jansson, Patrik, Johan Jeuring, and students of the Utrecht University Generic
Programming class (2007). “Testing properties of generic functions”. In:
Proceedings of IFL 2006. Ed. by Zoltan Horvath. Vol. 4449. Lecture Notes
in Computer Science. Springer, pp. 217-234 (cit. on p. 117).

http://dx.doi.org/10.1145/237721.237792
http://dx.doi.org/10.1017/S0960129500000852
http://dx.doi.org/10.1017/S0960129500000852
http://dx.doi.org/10.1145/1596614.1596626
http://dx.doi.org/10.1145/165180.165214
http://dx.doi.org/10.1145/301687.289640

References 133

Johann, Patricia and Janis Voigtlander (2006). “The Impact of seq on Free
Theorems-based Program Transformations”. In: Fundamenta Informaticae
69.1-2, pp. 63—-102 (cit. on pp. 13, 52, 111).

Kleene, Stephen Cole (1945). “On the interpretation of intuitionistic num-
ber theory”. In: Journal of Symbolic Logic 10.4, pp. 109-124 (cit. on p. 66).

— (1971). Introduction to metamathematics. Wolters-Noordhoff (cit. on p. 66).

Knuth, Donald E. (1997). The Art of Computer Programming, Volume 1: Fun-
damental Algorithms. Addison-Wesley Professional. 1sBN: 0201896834 (cit.
on p. 1).

— (1998). The Art of Computer Programming, Volume 3: Sorting and Search-
ing (2nd Edition). 2nd ed. Addison-Wesley Professional. 1sBN: 0201896850

(cit. on pp. 98, 117).

Kreisel, Georg (1959). “Interpretation of analysis by means of constructive
functionals of finite types”. In: Constructivity in mathematics. Ed. by A.
Heyting. North-Holland, Amsterdam, pp. 101-128 (cit. on p. 66).

Krivine, Jean-Louis (1997). Lambda-calcul — types et modeéles. Dunod. I1SBN:
2225820910 (cit. on pp. 66, 76, 77, 84).

Krivine, Jean-Louis and Michel Parigot (1990). “Programming with proofs”.
In: Journal of Information Processing and Cybernetics 26.3, pp. 149—167. ISSN:
0863-0593 (cit. on p. 66).

Leivant, Daniel (1990). “Contracting proofs to programs”. In: Logic and
Computer Science, pp. 279—327 (cit. on pp. 66, 77, 85).

Leroy, Xavier (2009). “Formal verification of a realistic compiler”. In: Com-
munications of the ACM 52.7, pp. 107-115 (cit. on p. 6).

Mairson, Harry (1991). “Outline of a proof theory of parametricity”. In:
Proceedings of the 5th ACM conference on Functional programming languages
and computer architecture. Vol. 523. Lecture Notes in Computer Science.
Springer-Verlag, pp. 313—327. DOL: 10.1007/3540543961_15 (cit. on pp. 51,
66, 84, 85).

Marlow, Simon (2010). “Haskell 2010 Language Report”. http://haskell.
org/definition/haskel12010.pdf (cit. on p. 3).

Martin-Lof, Per (1984). Intuitionistic type theory. Bibliopolis (cit. on pp. 2, 6).

Mcbride, Conor (2010). “Ornamental Algebras, Algebraic Ornaments”. Manuscript
available online (cit. on p. 87).

http://dx.doi.org/10.1007/3540543961_15
http://haskell.org/definition/haskell2010.pdf
http://haskell.org/definition/haskell2010.pdf

134 References

McBride, Conor and James McKinna (2004). “The view from the left”. In:
Journal of Functional Programming 14.01, pp. 69—111 (cit. on pp. 16, 65).

Metcalf, Michael and John Reid (1990). Fortran go explained. Oxford Uni-
versity Press. 1SBN: 0198537727 (cit. on p. 3).

Milner, Robert, Mads Tofte, and Robert Harper (1990). The definition of Stan-
dard ML. MIT press. ISBN: 0262631296 (cit. on p. 3).

Milner, Robin (1972). “Logic for Computable Functions: description of a
machine implementation.” In: Artificial Intelligence (cit. on p. 66).

Miquel, Alexandre (2001). “Le Calcul des Constructions implicite: syntaxe
et sémantique”. Thése de doctorat. Université Paris 7 (cit. on pp. 16, 19,
81).

Monnier, Stefan and David Haguenauer (2010). “Singleton types here, sin-
gleton types there, singleton types everywhere”. In: Proceedings of the 4th
ACM SIGPLAN workshop on Programming languages meets program verifi-
cation. Madrid, Spain: ACM, pp. 1-8. 1SBN: 978-1-60558-890-2. DOI: 10.
1145/1707790.1707792 (cit. on p. 52).

Morris, Peter and Thorsten Altenkirch (2009). “Indexed Containers”. In:
Twenty-Fourth IEEE Symposium on Logic in Computer Science. Los Alami-
tos, CA, USA: IEEE Computer Society, pp. 277—285. DOIL: http://doi.
ieeecomputersociety.org/10.1109/LICS.2009.33 (cit. on pp. 48, 123).

Neis, Georg, Derek Dreyer, and Andreas Rossberg (2009). “Non-parametric
parametricity”. In: Proceedings of the 14th ACM SIGPLAN international
conference on Functional Programming. Edinburgh, Scotland: ACM, pp. 135—
148. ISBN: 978-1-60558-332-7. DOI: 10.1145/1596550. 1596572 (cit. on p. 13).

Nilsson, Rickard (2009). ScalaCheck. http://code.google.com/p/scalacheck/
(cit. on p. 97).

Norell, Ulf (2007). “Towards a practical programming language based on
dependent type theory”. PhD Thesis. Chalmers Tekniska Hogskola (cit.
on pp. 3, 6, 14, 16, 65, 81, 126).

Oury, Nicolas and Wouter Swierstra (2008). “The power of Pi”. In: Pro-
ceedings of the 13th ACM SIGPLAN international conference on Functional
Programming. Victoria, BC, Canada: ACM, pp. 39-50. ISBN: 978-1-59593-
919-7. DOI: 10.1145/1411204.1411213 (cit. on pp. 3, 53).

Paulin-Mohring, Christine (1989a). “Extracting Fw’s programs from proofs
in the calculus of constructions”. In: POPL ‘89: Proceedings of the 16th
ACM SIGPLAN-SIGACT symposium on Principles of programming languages.

http://dx.doi.org/10.1145/1707790.1707792
http://dx.doi.org/10.1145/1707790.1707792
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/LICS.2009.33
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/LICS.2009.33
http://dx.doi.org/10.1145/1596550.1596572
http://code.google.com/p/scalacheck/
http://dx.doi.org/10.1145/1411204.1411213

References 135

Austin, Texas, United States: ACM, pp. 89—104. ISBN: 0-89791-294-2. DOI:
http://doi.acm.org/10.1145/75277.75285 (cit. on pp. 66, 84).

— (1989b). “Extraction de programmes dans le Calcul des Constructions”.
PhD thesis. Université Paris 7 (cit. on p. 66).

- (1993). “Inductive definitions in the system Coq — rules and properties”.
In: Typed Lambda Calculi and Applications. Ed. by Marc Bezem and Jan
Friso Groote. Springer, pp. 328-345 (cit. on pp. 16, 30).

Pierce, Benjamin C. (2002). Types and Programming Languages. 1st ed. The
MIT Press. 1SBN: 0-262-16209-1 (cit. on pp. 2, 4).

Plotkin, Gordon and Martin Abadi (1993). “A logic for parametric poly-
morphism”. In: Proceedings of the International Conference on Typed Lambda
Calculi and Applications. Vol. 664. Lecture Notes in Computer Science.

Springer, pp. 361-375 (cit. on pp. 25, 51, 84).

Pottier, Francois and Nadji Gauthier (2006). “Polymorphic typed defunc-
tionalization and concretization”. In: Higher-Order Symbol. Comput. 19.1,
pp. 125-162 (cit. on p. 118).

Pouillard, Nicolas (2011). “Nameless, Painless”. In: Proceedings of the 16th
ACM SIGPLAN international conference on Functional Programming. ICFP
"11. to appear. New York, NY, USA: ACM, pp. 320-332 (cit. on p. 53).

Reynolds, John C. (1974). “Towards a theory of type structure”. In: Collogue
sur la Programmation. Springer, pp. 408—425 (cit. on p. 5).

— (1983). “Types, abstraction and parametric polymorphism”. In: Informa-
tion processing 83.1, pp. 513—523 (cit. on pp. 5, 13, 20, 24, 29, 51, 66, 74,
84).

- (1998). “Definitional Interpreters for Higher-Order Programming Lan-
guages”. In: Higher-Order and Symbolic Computation 11.4, pp. 363—397 (cit.
on p. 118).

Runciman, Colin, Matthew Naylor, and Fredrik Lindblad (2008). “Small-
check and lazy smallcheck: automatic exhaustive testing for small val-
ues”. In: Proceedings of the first ACM SIGPLAN symposium on Haskell. Vic-
toria, BC, Canada: ACM, pp. 37—48. ISBN: 978-1-60558-064-7. DOL: 10 .
1145/1411286.1411292 (cit. on pp. §, 119).

Saff, David (2007). “Theory-infected: or how i learned to stop worrying
and love universal quantification”. In: Companion to the 22nd ACM SIG-
PLAN conference on Object-oriented programming systems and applications

http://dx.doi.org/http://doi.acm.org/10.1145/75277.75285
http://dx.doi.org/10.1145/1411286.1411292
http://dx.doi.org/10.1145/1411286.1411292

136 References

companion. Montreal, Quebec, Canada: ACM, pp. 846-847. 1sBN: 978-1-
59593-865-7. DOIL: 10.1145/1297846.1297919 (cit. on p. 97).

Sheeran, Mary (2007). Hardware Design and Functional Programming: a Per-
fect Match. Talk at Hardware Design and Functional Languages (cit. on

p- 115).

Staples, John (1973). “Combinator realizability of constructive finite type
analysis”. In: Cambridge Summer School in Mathematical Logic, pp. 253—
273 (cit. on p. 66).

Sun Tzu (2003). The Art of War. Penguin Classics. 1SBN: 0140439196 (cit. on
p- 1).

Svenningsson, Josef (2002). “Shortcut fusion for accumulating parameters
& zip-like functions”. In: Proceedings of the seventh ACM SIGPLAN inter-
national conference on Functional Programming. Pittsburg PA, USA: ACM,
Pp- 124—132. DOL: 10.1145/583852.581491 (cit. on p. 121).

Takeuti, Izumi (2004). “The Theory of Parametricity in Lambda Cube”.
Manuscript (cit. on pp. 13, 51).

team, The Coq development (2010). The Coq proof assistant (cit. on pp. 16,
65, 67, 81).

Tillmann, Nikolai and Wolfram Schulte (2005). “Parameterized unit tests”.
In: SIGSOFT Software Engineering Notes 30.5, pp. 253—262. DOIL: 10.1145/
1095430.1081749 (cit. on pp- 97, 120).

Troelstra, Anne Sjerp (1998). “Handbook of proof theory”. In: ed. by Samuel
R. Buss. Elsevier. Chap. Realizability (cit. on p. 66).

Van Oosten, Jaap (2002). “Realizability: a historical essay”. In: Mathematical
Structures in Computer Science 12.03, pp. 239—-263 (cit. on p. 66).

Voigtldnder, Janis (2008). “Much ado about two (pearl): a pearl on parallel
prefix computation”. In: SIGPLAN Not. 43.1, pp. 29-35. DOIL: 10.1145/
1328897.1328445 (cit. on pp. 98, 115).

— (2009a). “Bidirectionalization for free! (Pearl)”. In: Proceedings of the 36th
annual ACM SIGPLAN-SIGACT symposium on Principles of programming
languages. Savannah, GA, USA: ACM, pp. 165-176. ISBN: 978-1-60558-
379-2. DOL: 10.1145/1480881.1480904 (cit. on p. 111).

— (2009b). “Free theorems involving type constructor classes: Functional
pearl”. In: Proceedings of the 14th ACM SIGPLAN international conference on

http://dx.doi.org/10.1145/1297846.1297919
http://dx.doi.org/10.1145/583852.581491
http://dx.doi.org/10.1145/1095430.1081749
http://dx.doi.org/10.1145/1095430.1081749
http://dx.doi.org/10.1145/1328897.1328445
http://dx.doi.org/10.1145/1328897.1328445
http://dx.doi.org/10.1145/1480881.1480904

References 137

Functional Programming. Edinburgh, Scotland: ACM, pp. 173-184. ISBN:
978-1-60558-332-7. DOI: 10.1145/1631687.1596577 (cit. on pp. 26, 48).

Vytiniotis, Dimitrios and Stephanie Weirich (2010). “Parametricity, Type
Equality, and Higher-Order Polymorphism”. In: Journal of Functional Pro-
gramming 20.02, pp. 175-210. DOI: 10 .1017 /S0956796810000079 (cit. on

pPp- 13, 50, 51).

Wadler, Philip (1989). “Theorems for free!” In: Proceedings of the fourth in-
ternational conference on Fumnctional programming languages and computer
architecture. Imperial College, London, United Kingdom: ACM, pp. 347-
359. ISBN: 0-89791-328-0. DOIL: 10.1145/99370.99404 (cit. on pp. 5, 29, 33,

47, 66, 105).

— (2007). “The GirardReynolds isomorphism (second edition)”. In: Theoret-
ical Computer Science 375.1-3, pp. 201—226 (cit. on pp. 7, 25, 29, 51, 66, 71,
77, 84, 85).

Wadler, Philip and Stephen Blott (1989). “How to make ad-hoc polymor-
phism less ad hoc”. In: POPL ’89: Proceedings of the 16th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages. ACM, pp. 60—
76. ISBN: 0897912942. DOI: 10.1145/75277.75283 (cit. on p. 47).

Washburn, Geoffrey and Stephanie Weirich (2003). “Boxes go bananas: en-
coding higher-order abstract syntax with parametric polymorphism”. In:
Proceedings of the eighth ACM SIGPLAN international conference on Func-
tional Programming. Uppsala, Sweden: ACM, pp. 249—262. ISBN: 1-58113-
756-7. DOL: 10.1145/944705.944728 (cit. on p. 121).

Werner, Benjamin (1994). “Une théorie des constructions inductives”. PhD
Thesis. Université de Paris 7 (cit. on p. 6).

http://dx.doi.org/10.1145/1631687.1596577
http://dx.doi.org/10.1017/S0956796810000079
http://dx.doi.org/10.1145/99370.99404
http://dx.doi.org/10.1145/75277.75283
http://dx.doi.org/10.1145/944705.944728

	Introduction
	1 Background
	2 Contents

	Paper I – Proofs for Free - Parametricity for Dependent Types
	1 Introduction
	2 Pure type systems, with colour
	3 The relational interpretation
	4 Constants and datatypes
	5 Internalisation
	6 Applications
	7 Discussion
	A Proof of the abstraction theorem

	Paper II – Realizability and Parametricity in PTSs
	1 Introduction
	2 The first level
	3 The second level
	4 The third level
	5 Extensions
	6 Related work and conclusion
	A Vectors from Lists
	B Details of proofs

	Paper III – Testing Polymorphic Properties
	1 Introduction
	2 Examples
	3 Generalisation
	4 More examples
	5 Related work
	6 Future work
	7 Conclusion
	A Applying parametricity
	B Embedding containers
	C Auxiliary results about free distributive lattices

	References

